

Proceedings of the First Workshop on
Service-Oriented Architectures and
Software Product Lines

Sholom Cohen
Robert Krut

May 2008

SPECIAL REPORT WITH UNLIMITED DISTRIBUTION
CMU/SEI-2008-SR-006

Product Line Practice Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2008 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract vii

1 Introduction 1
1.1 About This Report 1

2 Workshop Organization and Format 3
2.1 Workshop Organization 3

2.1.1 Organizers 3
2.1.2 Facilitator 3
2.1.3 Participants 3

2.2 Workshop Format 4

3 Workshop Papers and Presentations 5
3.1 Papers 5
3.2 Presentations 5

3.2.1 Methods for SOA and Product Line Development 5
3.2.2 Managing Service Features and Variability 7
3.2.3 Application Examples 8

4 Additional Discussion Topics 13
4.1 What Are the Possible SOA-PL Connections? 13
4.2 Dynamic Aspects—What Are the Issues? 14
4.3 What Is a Reusable Service? 14
4.4 What Are the Architectural Aspects of SPLs Versus SOA? 15
4.5 What Is the Scope of a System in the Context of Services? 16

5 Workshop Outcomes 17

References 19

Appendix A: Software Product Lines and Service-Oriented Architecture: A Systematic
Comparison of Two Concepts A-1

Appendix B: A Taxonomy of Variability in Web Service Flows B-1

Appendix C: Comparison of Service and Software Product Family Modeling C-1

Appendix D: Identifying and Specifying Reusable Services of Service Centric Systems
Through Product Line Technology D-1

Appendix E: Product Lines that Supply Other Product Lines: A Service-Oriented Approach E-1

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2008-SR-006

List of Figures

Figure 1: Variability Points in Service Invocation 8

Figure 2: Activities for Managing Services in an SOA-Based System 9

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2008-SR-006

List of Tables

Table 1: Differences Between Architecture Practices for SOA and Product Lines 16

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2008-SR-006

Abstract

This report contains the proceedings of the First Workshop on Service-Oriented Architectures and
Product Lines (SOAPL) 2007 that was held on September 10th, 2007 in Kyoto, Japan as part of
the 2007 Software Product Line Conference (SPLC 2007). This report includes an overview of the
workshop, four invited presentations, details of the workshop’s outcomes, and the workshop posi-
tion papers.

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2008-SR-006

1 Introduction

Service-oriented architecture (SOA) and software product line (SPL) approaches to software de-
velopment share a common goal. They both encourage an organization to reuse existing assets
and capabilities rather than repeatedly redeveloping them for new systems. These approaches en-
able organizations to capitalize on reuse to achieve desired benefits such as productivity gains,
decreased development costs, improved time to market, higher reliability, and competitive advan-
tage. Their distinct goals may be stated as

• SOA: “enable assembly, orchestration and maintenance of enterprise solutions to quickly
react to changing business requirements” 1

• SPL: systematically capture and exploit commonality among a set of related systems while
managing variations for specific customers or market segments

The First Workshop on Service-Oriented Architectures and Product Lines (SOAPL) 2007 ex-
plored the connections from two perspectives:

1. Can services support product lines using a service-oriented architecture?

2. How can use of product line practices support services and service-oriented architectures?

1.1 ABOUT THIS REPORT

This report captures the information presented and discussed during SOAPL 2007. Section 2 out-
lines the workshop organization and format, Section 3 summarizes the presentations, Section 4
presents additional discussion topics, and Section 5 presents workshop outcomes. Appendices A
through E contain the accepted workshop papers, which appear as they did upon acceptance ex-
cept for minor editorial and formatting changes.

1 Wienands, Christoph. “Studying the Common Problems with Service-Oriented Architecture and Software Product

Lines.” Service-Oriented Architecture (SOA) & Web Services Conference. Atlanta, GA, October 2006.

 SOFTWARE ENGINEERING INSTITUTE | 1

2 | CMU/SEI-2008-SR-006

2 Workshop Organization and Format

2.1 WORKSHOP ORGANIZATION

Sections 2.1.1 through 2.1.3 below list the people who organized, facilitated, and participated in
SOAPL 2007.

2.1.1 Organizers
• Sholom Cohen, Carnegie Mellon® Software Engineering Institute (SEI), USA,

sgc@sei.cmu.edu

• Paul Clements, SEI, USA, clements@sei.cmu.edu

• Andreas Helferich, Universität Stuttgart, Germany, helferich@wi.uni-stuttgart.de

• Robert Krut, SEI, USA, rk@sei.cmu.edu

• Grace Lewis, SEI, USA, glewis@sei.cmu.edu

• Dennis Smith, SEI, USA, dbs@sei.cmu.edu

• Christoph Wienands, Siemens Corporate Research, USA, christoph.wienands@siemens.com

2.1.2 Facilitator
• Robert Krut, Software Engineering Institute, USA, rk@sei.cmu.edu

2.1.3 Participants
• David Benavides, University of Seville, Spain, benavides@tdg.lsi.us.es

• Masayoshi Hagiwara, Microsoft, Japan, masayh@microsoft.com

• Andreas Helferich, Universität Stuttgart, Germany, helferich@wi.uni-stuttgart.de

• Jean-Narc Jezequel, University of Rennes, INRIA, France, Jean-Narc.Jezequel@inria.fr

• Larry Jones, Software Engineering Institute, USA, lgj@sei.cmu.edu

• Christian Kästner, University of Magdeburg, Germany, ckaestne@uni-magdeburg.de

• Dan Lee, ICU, Korea, danlee@icu.ac.kr

• Jaejoon Lee, Lancaster University, U.K., j.lee@comp.lancs.ac.uk (Fraunhofer Institute for
Experimental Software Engineering (IESE) in Frankfurt at the time of his participation)

• Tomi Männistö, Helsinki University of Technology, Finland, tomi.mannisto@tkk.fi

• Shuhei Nojiri, Hitachi, Japan, shuhei.nojri.dd@hitachi.com

• Mikko Raatikainen, Helsinki University of Technology, Finland, mikko.raatikainen@tkk.fi

• Ktar Sato, DENSO, Japan, ktar@bof.jp

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 3

http://www.sei.cmu.edu/productlines/SOAPL/workshop_organizers.html#cohen
http://www.sei.cmu.edu/productlines/SOAPL/workshop_organizers.html#clements
http://www.sei.cmu.edu/productlines/SOAPL/workshop_organizers.html#helferich
mailto:Robert%20Krut
http://www.sei.cmu.edu/productlines/SOAPL/workshop_organizers.html#lewis
http://www.sei.cmu.edu/productlines/SOAPL/workshop_organizers.html#smith
http://www.sei.cmu.edu/productlines/SOAPL/christoph.wienands@siemens.com
mailto:rk@sei.cmu.edu
mailto:j.lee@comp.lancs.ac.uk
mailto:mikko.raatikainen@tkk.fi
mailto:ktar@bof.jp

2.2 WORKSHOP FORMAT

The workshop format was highly interactive and focused on making tangible progress towards
answering the two questions relating to the connections between SOA and product lines. The ac-
cepted papers provided the key issues relating to the workshop theme: “Service-Oriented Archi-
tectures and Product Lines - What Is the Connection?” The breakdown of the papers into topical
areas helped us set up topics for discussion at the workshop. The paper topics broke down into
three areas:

1. methods for SOA and product line development

2. managing service features and variability

3. examples of applications

The morning session featured presentations based on position papers (Section 3). At least one pa-
per was presented for each topic area. Presentations were limited to 15 minutes followed by dis-
cussion.

The afternoon session provided an opportunity for the group to continue discussing the identified
topic areas or to identify new topics based on the dynamics and interests of the group. The group
identified six topics to discuss for the afternoon session (see Section 4).

4 | CMU/SEI-2008-SR-006

3 Workshop Papers and Presentations

3.1 PAPERS

The workshop organizers accepted the following five papers, each of which appears in an appen-
dix of this report.

3. Appendix A: Software Product Lines and Service-Oriented Architecture: A Systematic
Comparison of Two Concepts

4. Appendix B: A Taxonomy of Variability in Web Service Flows

5. Appendix C: Comparison of Service and Software Product Family Modeling

6. Appendix D: Identifying and Specifying Reusable Services of Service Centric Systems
Through Product Line Technology

7. Appendix E: Product Lines that Supply Other Product Lines: A Service-Oriented Approach

In addition to the papers, the organizers accepted one website as a contribution, which addresses
the relationship between SOA and SPL: A Framework for Software Product Line Practice, Ver-
sion 5.0, FAQ (http://www.sei.cmu.edu/productlines/frame_report/FAQ.htm#other_approaches)
[SEI 2007a].

3.2 PRESENTATIONS

Four papers were presented during the workshop morning session and are described below in Sec-
tions 3.2.1 through 3.2.3. Each presentation is listed by the topic area identified by the workshop
organizers. A brief overview of the presentation is included as well as questions submitted by the
workshop organizers prior to the presentations.

The complete presentations are provided on the SOAPL 2007 website
(http://www.sei.cmu.edu/productlines/SOAPL/) [SEI 2007b].

3.2.1 Methods for SOA and Product Line Development

Mikko Raatikainen made the presentation for the first topic area. Mikko is from the Helsinki Uni-
versity of Technology, Finland, and co-authored the paper he presented: Comparison of Service
and Software Product Family Modeling.

The presentation began with a brief discussion of the similarities and differences between soft-
ware product families2 (SPFs) and service-oriented computing. They are similar in that they both
involve developing applications from existing software and a reliance on modeling. They differ in
that service-oriented computing involves dynamic computational elements whereas SPFs typically
comprise static elements (i.e., dynamic binding versus static).

2 Software product families were equated to software product lines as defined by Clements [Clements 2001].

 SOFTWARE ENGINEERING INSTITUTE | 5

http://www.sei.cmu.edu/productlines/frame_report/FAQ.htm#other_approaches
http://www.sei.cmu.edu/productlines/SOAPL/

The main body of the presentation examined and compared the modeling methods of SPFs and
service-oriented computing. SPF family modeling focuses on domain models which include vari-
ability models and product models. SPF modeling employs many approaches such as Feature-
Oriented Domain Analysis and extensions to existing approaches such as UML. Service-oriented
computing modeling focuses on modeling approaches for web services, since web services are
currently the dominant implementation of service-oriented computing. Modeling of web services
is typically driven by standards such as Web Service Definition Language (WSDL) and Business
Process Execution Language (BPEL). The notation is usually Extensible Markup Language
(XML).

The noted comparisons between the modeling methods are

• Services involve no domain or variability modeling while SPFs do.

• Services tend to be compositional while SPFs tend to be top down.

• Both focus on architectural entities. However, SPFs typically focus on static entities whereas
service-oriented computing models typically focus on dynamic entities.

• SPFs are much broader in focus at the architectural level while modeling in service-oriented
computing tends to focus on the behavior of the system.

• Service-oriented computing models employ an XML notation, while SPF modeling typically
uses a graphical notation.

The presentation concluded with suggestions of future directions for combining the two modeling
approaches:

• The feasibility of variability modeling for service-oriented computing should be studied.

• Variability modeling in SPFs should be extended to include lessons learned from behavior
modeling and analysis of services and business processes.

• The necessary approach for modeling of services and SPFs should be studied more thor-
oughly.

The workshop organizers submitted the following questions prior to the presentation.

Questions: “Could criteria from the SEI Service Migration and Reuse Technique (SMART) serve
as an approach for the migration of legacy components for product lines? What specific criteria
would apply here? Are there detailed examples or a comparison of models (e.g, feature models
versus SDL/BPEL/Business Process modeling notation (BPMN)?”

Response: The authors were not familiar with specific examples of SMART’s application to leg-
acy systems. They were also not aware of any detailed examples or a comparison of models.

The presenter pointed out that SPFs were intra-organizational whereas the use of services is ex-
ternal. The presenter reiterated that there was a relative tendency for a static focus in SPFs versus
a dynamic focus for service-oriented computing. His team had tried to apply its SPF modeling
tools (KumbangTools) to service composition with some success [KumbangTools 2008]. They
were not suitable for complex behavior.

6 | CMU/SEI-2008-SR-006

The presenter felt that future efforts should focus on

• the creation of standards for SPLs similar to those being worked on with services

• the working implementation of SPF modeling tools in service-oriented computing

• more interplay between research and practice

3.2.2 Managing Service Features and Variability

David Benavides made the presentation for the second topic area. David is from the University of
Seville, Seville, Spain, and co-authored the paper he presented: A Taxonomy of Variability in Web
Service Flows.

This presentation provided a brief discussion of how SPL practices can be used to support service-
oriented applications. Since the most common implementation of service-oriented applications is
web services, this presentation primarily focused on how to manage variability in web services, in
the context of SPL and SOA, by defining a Web Service Flow (WS-flow) and identifying vari-
ability points in WS-flows. This research provides a starting point for a base of knowledge about
variability in WS-flows. It can be used further for evaluating the different mechanisms for imple-
menting variability in WS-flows and identifying factors that affect the selection of such variability
mechanisms.

A WS-flow is a composite web service that is implemented through use of a process-based ap-
proach. A WS-flow specifies a set of tasks that are executed by the participants of a process and
defines the execution order of tasks, the data exchange among the participants, and the business
rules. The language used to define WS-flows is BPEL.

In this body of work, identification of variability points in WS-flows was limited to service invo-
cation and the process workflow structure. The presenter defined a service invocation as “an ac-
tivity in which workflow invokes another service and exchanges messages with it returning con-
trol back to the workflow.” The process workflow structure “determines all the aspects related to
the way in which the process is executed: the execution order, the data exchanged between par-
ticipants, the business rules, the errors treatment, etc.”

The presentation provided a feature model summarizing the variability points in the invocation of
services, as shown in Figure 1.

 SOFTWARE ENGINEERING INSTITUTE | 7

Service Invocation

Partner Selection Protocol

Partner Selection Criteria

Message Exchange

Evaluation Context Definition Time

Hard-coded Delegated

Synchronous Asynchronous SOAP/HTTP

SOAP/JMS SOAP/SMTP

XML/HTTP

Design-time Run-time

User-Driven Automated Run-timeDesign-time

Binding Time

Figure 1: Variability Points in Service Invocation

The four main variability points identified were: 1) binding time, 2) partner selection criteria, 3)
message exchange, and 4) protocols. Binding time offers the selection of services to be invoked at
design time or runtime where runtime is further divided into user driven and automated. Partner
selection criteria helps to determine which of the available services offering the same functional-
ity will be selected for invocation. Evaluation context enables the selection criteria to be hard
coded or delegated. Definition time enables the selection criteria to be modified at design time or
runtime. Messages exchanged between service workflows and services may be synchronous or
asynchronous. Four different protocols may be used for service interactions over the network.

The two main variability points in process workflow structure are control flow and data flow.
Control flow is the workflow structure that determines the tasks to be executed and the execution
order. Data flow covers the exchange of data between services.

The presentation concluded with the reiteration that there is a need for a classification of variabil-
ity points in WS-flow to serve as a starting point for handling variability through services in the
context of SPLs and SOA. Future work will look at implementation technologies—paying par-
ticular attention to the ways in which they support the variability points presented—leading to a
service-based development of business-driven SPLs.

The workshop organizers submitted the following questions prior to the presentation.

Questions: “Where an application in an SOA-based product line is built using services from ex-
ternal core asset sources, how would product development manage variability and selection
of variation of features within those assets? Could entire services be substituted? Are there varia-
tions within a service? Is there any implementation of the taxonomy?”

Response: In their work, the authors don’t have an implementation yet, so they are not sure how
product development would manage variability and selection of variation of features within those
assets or how to automate the feature model. Their research currently examines the relationship
between SPLs and SOA.

3.2.3 Application Examples

Two presentations were made for the third topic area. Jaejoon Lee made the first presentation.
Jaejoon worked at the Fraunhofer Institute for Experimental Software Engineering (IESE) at the

8 | CMU/SEI-2008-SR-006

time of this presentation and now can be contacted at Lancaster University in the U.K. He co-
authored the paper he presented: Identifying and Specifying Reusable Services of Service Centric
Systems Through Product Line Technology.

This presentation provided a brief discussion on the challenges of dynamically managing services
in an SOA-based system and how product line engineering concepts were used to identify and
specify reusable services based on features. The approach to identify or specify reusable services
of an SOA-based system is presented in Figure 2.

Feature and
feature
binding
analyses

Service
analysis

Orchestrating
service

specifications /
development

- Locality of tasks

Name Activity

Legend

Data flow

Name Activity

Legend

Data flow

- Feature model
- Feature binding units
- Feature binding time

Molecular
service

specifications /
development

- Orchestrating
services

- Molecular
services

Reusable
service

repository

- Reusable
service

components

System
integration

and
deployment

- Workflow
control

components

- Retrieved
services

- A target
system

Figure 2: Activities for Managing Services in an SOA-Based System

The feature and feature binding analysis organize the system features into a product line features
model that includes identified binding units (representing major functionality of a system) and
relative binding times.3 The service analysis examines the feature model and feature binding in-
formation to identify molecular services (computational-oriented services that represent a prede-
fined task) and orchestrating services (behavior-oriented services that define a sequence of tasks).
The molecular services are the basic building blocks, reused as-is by the orchestrating services.
Molecular services are self-contained and stateless, have pre-/post-conditions, and represent do-
main-specific services.4,5 The orchestrating service represents a workflow for dependable orches-
tration of molecular services. Each workflow is based on a service behavior specification with
pre-/post-conditions and invariants.

To illustrate this approach, the presenter introduced the application domain “Virtual Office of the
Future.” The virtual office provides workers with tools, technology, and skills to perform tasks at
any time, from any location. The presenter walked through diagrams for molecular service identi-
fication, workflow specification, and identification of tasks from a workflow specification for the
virtual office.

3 Grouping of features into binding units of the same binding times is a key driver for identifying reusable services.

4 Domain-specific is a key property in identifying the correct level of granularity of a service.

5 Quality of service is defined in the features of the molecular service.

 SOFTWARE ENGINEERING INSTITUTE | 9

The workshop organizers submitted the following question prior to the presentation.

Question: How would identified services be used in applications? Might we see hybrid service-
/component- oriented applications? What evidence is there of an actual “right” scale of granular-
ity? Do case study artifacts beyond the limited figures in the paper actually exist?

Response: The authors are planning to prototype the virtual office. They are not sure about a hy-
brid service/component-oriented application. They need to study the molecular service as having
the right level of granularity.

Christian Kästner made the second presentation in the third topic area. Christian is from the Uni-
versity of Magdeburg, Magdeburg, Germany, and co-authored the paper he presented: Product
Lines that Supply Other Product Lines: A Service-Oriented Approach.

This presentation provided a service-oriented approach to combining different products from dif-
ferent product lines into a third product line, yielding more elaborate products. The approach uses
an SOA in which product lines are regarded as services that are consumed by service-oriented
product lines (SOPLs).

The concept of a SOPL is illustrated through a “web portals of portlets” example. A portal is de-
fined as an “application that provides centralized access to a variety of services.” Portlets are
components (services) offered by a third party. The scenario requires that a product line consumes
products that are supplied from third-party product lines.

In this example, there exists a two-fold connection between product lines and SOA. First, there
exists a product line of portals that enables customer portals to be developed from customized
portlets. The application functionality is customized by using product lines of supplied services,
and the application interface is customized by using SOA standards to consume supplied services.
Second, the portals may be customized creating a product line of portals. Therefore, not only is
the portlet customized from a product line, but the portal is as well.

How can a software product line automatically request and consume a product from another prod-
uct line? The vision for the SOPL is the integration of products supplied from different product
lines with minimal “human intervention.” Currently, manual integration is the means of combin-
ing different products from different product lines. By using SOA, product developers can “ho-
mogenize” the products from product lines. Therefore, the SOPL can be used to automate the op-
eration of a software product line by automatically requesting and consuming products from
another product line.

The SOPL relies on a supplier/consumer relationship and operations. A supplier is defined as a
product line that supplies products to other product lines. It is characterized by descriptive infor-
mation, product information (including feature and core asset information), and product interface.
A consumer is a product line that consumes products from supplier product lines. Operations in-
volve registration (i.e., the discovery of each product line supplier) and consumption (i.e., produc-
tion and delivery of a product) based on the existing SOA standardization efforts and tool support.

The web portals of portlets example illustrated the idea of SOPL. However, more work must be
done to create the infrastructure to make this a viable approach with models, tools, and so forth.

10 | CMU/SEI-2008-SR-006

Since this presentation did not have a question submitted by the workshop organizers prior to the
presentations, the authors elected to answer the workshop theme: “Service-Oriented Architectures
and Product Lines - What Is the Connection?”

Question: Service-Oriented architectures and product lines - what is the connection?

Response: The authors believe that SOA techniques can be used as an infrastructure on which to
build increasingly complex software product line systems. Their vision is to facilitate the emer-
gence of a concurrent market where atomic products from supplier product lines can be automati-
cally integrated into a larger product line.

 SOFTWARE ENGINEERING INSTITUTE | 11

12 | CMU/SEI-2008-SR-006

4 Additional Discussion Topics

When the presenters were finished, the group discussed topics that arose in response to their pres-
entations. The discussions followed the dynamics and interests of the group by identifying the
following five topics:

1. What are the possible SOA-PL connections?

2. What are the issues surrounding dynamic aspects of both SOA and PLs?

3. What is a reusable service?

4. What are the architectural aspects of SPLs versus SOA?

5. What is the scope of a system in the context of services?

4.1 WHAT ARE THE POSSIBLE SOA-PL CONNECTIONS?

This discussion focused on two topics:

1. including services within a product line architecture

2. developing a service as a product line

To include services in a product line, developers could include a variation point in the architecture
implemented as a component or as a service. A specific configuration could select the component
or the service, depending on the specific functional or quality features needed by the application
and satisfied by each alternate. Services in this context could address possible selection features
such as

• a need for dynamic variation

• exploitation of the availability of existing services where appropriate

• use of Universal Description Discovery and Integration (UDDI) to transfer information dur-
ing execution for service selection

• rapid construction of product line systems

A second connection could be designing services as a product line. In this context, services them-
selves would be configurable according to architecture variations or specific features. Possibly a
service product line could be offered in a marketplace, where an organization acquires the service
outright for in-house tailoring or commissions the SOA product line developer to tailor the prod-
uct line for the organization’s use. For example, the SOA product line may be a mortgage service
product line. A bank or other lending institution could acquire access to a specific instance, defin-
ing the specializations it needs to the SOA product line developer. Alternatively, the entire prod-
uct line capability could be acquired, and the bank or lending institution could tailor the service in
multiple ways dependent on customer categories, local banking regulations, or other variations.

Many of the organizational issues encountered in introducing SOA or SPLs are similar. While
some involve technical aspects—architecture, testing, integration—the highest risk areas tend to
be organizational. The need to justify investment, train developers, and operate a product

 SOFTWARE ENGINEERING INSTITUTE | 13

line/SOA development organization involves many of the same practice areas. A sharing of case
studies based on real-world examples could support integrating product line solutions and SOA
solutions. For example, both SOA and product lines currently suffer from limitations on reuse
outside the immediate development organization. Investigation of successful uses of a product
line or SOA across an enterprise and even between enterprises could support the SOA and product
line connection.

4.2 DYNAMIC ASPECTS—WHAT ARE THE ISSUES?

Much of this discussion focused on the advantages of SOA in supporting dynamic execution. The
position of many in the discussion is that SOA executes dynamically, by definition, while compo-
nent technology is static. However, a product line architecture may also support a dynamic varia-
tion mechanism via plug-ins or some other plug-and-play architecture. Dynamic class loading in
Java, for example, allows selection of classes when needed, based on product and user context at
the time of class selection. Dynamic link libraries and reflection offer runtime selection for varia-
tion. The SOA and product line connection can benefit from the sharing of experience results in
this area.

The group also proposed that a performance penalty comes with dynamic selection and that de-
velopment is more difficult. However, dynamics can also reduce complexity. The group dis-
cussed printing services as an example. An application may support dynamic determination of a
printer, based on printing needs and existing conditions such as queue length or printer condition.
If I have a long file to print, the application may determine the efficiency of waiting for a faster
printer with a longer queue than immediate printing where there is no wait. The printer example
may be overly simplistic, since the application involved is by definition stateless—the application
“doesn’t care” what print services have been previously executed. Other services may perform
differently based on prior execution, where caching or other runtime service states may affect
quality of service.

In a pure SOA or mixed product line/SOA, other dynamic issues emerge. These include detection
of available or unavailable services and responses to these conditions. Is the protocol to retry or to
immediately fall back to an alternative service? What if no alternate is available or identified? Also,
can an existing application dynamically integrate services with new, unforeseen functionality?

Testing and reliability in a dynamic environment also affect validation. A tested service operates
within some known bounds, but dynamic selection may pose a context outside the tested bounds.
Does the service continue to perform within its “guaranteed performance parameters?” How does
a potential service user confirm or at least measure this situation? Third-party services in general
lead to uncertainty for the user. A service should publish its assumed pre- and post-conditions for
validation of services, so the user can determine, dynamically, if its current context satisfies these
conditions. If the current context does not, the potential service user looks elsewhere.

4.3 WHAT IS A REUSABLE SERVICE?

The paper and presentation by Jaejoon Lee, Identifying and Specifying Reusable Services of Ser-
vice Centric Systems Through Product Line Technology, makes a distinction between molecular,
or fine-grained, components and behavior or orchestrating services that manage the workflow of

14 | CMU/SEI-2008-SR-006

molecular tasks. This structure provides a two-tier scope—a lower tier of molecular, task-oriented
services that are intended for widespread as-is reuse and orchestrating services that must be tai-
lored for reuse. Orchestrating services satisfy a defined scope much as a product line restricts
scope. Scoping of service applications addresses some of the design risk of unbounded reuse. In-
herent in product lines is restriction of atomic services.

Klaus Turowski of the University of Augsburg, along with others in the German information sys-
tems community, has identified seven levels for specifying components within an information
systems application [Fellner 2000]. These components range in complexity from blocks of code,
modules, classes, objects, macro/templates, abstracts, data types, to component. The framework
distinguishes among these by reuse (e.g., platform dependency or inter-component dependency),
interface standards, interoperability, extent of deployment, marketability, and other factors. This
work has been extended to cover real-time service selection in component-based architectures
[Skroch 2007]. Adding services to the classification framework, and possibly components and
services of different granularities, could also support a service-to-component core asset compari-
son.

The group discussed the perceived differences between reusable services and components in a
product line. Components generally operate within a context defined by the architecture. The
component interface defines that context, and any component user must satisfy the terms of use.
Services, especially those that Jaejoon Lee’s paper refers to as molecular, make no assumptions
about context of use. While reusable services are intended for use in different contexts, a compo-
nent could similarly be built without any assumptions regarding context. A research area could be
established in order to determine the additional context information or assumptions that must be
stored and/or communicated. One proposed solution is an information broker that makes services
available through user registration with the broker. This approach could manage context between
a service or component and its respective users.

4.4 WHAT ARE THE ARCHITECTURAL ASPECTS OF SPLS VERSUS SOA?

The discussion contrasted differences in architecture practices between those used with product
lines and those used with SOA. While both share the need to define architecture context, struc-
ture, and compositional rules, many of the participants perceive a significant contrast between
SOA and product line architecture practices as summarized in the following table.

 SOFTWARE ENGINEERING INSTITUTE | 15

Table 1: Differences Between Architecture Practices for SOA and Product Lines

SOA Architecture Practices Product Line Architecture Practices

Architecture characterized as autonomous, de-
centralized

Architecture characterized as centralized, static

Business processes examined and modeled Architectures concentrate on views and view-
points for architecture descriptions

Rules easily changed Compositional rules predefined

Variability only within services or possibly
within processes

Variability within structure and components

Architecture defined by platform (e.g., enter-
prise service bus)

Architecture defines platform

Role of SOA unclear with respect to quality
attributes

Architecture guarantees quality attributes

A final aspect of the discussion contrasted the perceived “simplicity” of SOA systems. Integrating
independent services, the SOA protocols (web-based or others) and underlying platform may ad-
dress many architectural issues that are open design problems for a product line architecture. The
SOA developer in this view is the service developer/provider of interfaces with concerns separate
from those of the integration environment using services through published interfaces.

4.5 WHAT IS THE SCOPE OF A SYSTEM IN THE CONTEXT OF SERVICES?

This part of the discussion focused on the meaning of a service product line. Suppose services are
offered as static services for others. The offered services describe the scope of a product line, de-
fined by the functions offered, and vary according to nonfunctional, quality attributes such as se-
curity, memory/processor performance, or availability. Selection among services may occur at
runtime based on quality attributes offered by services performing the same function.

Many organizations control large numbers of services to support internal processes. Services may
be shared across groups within the organization, with designated partners, or on the open market.
The granularity of use within a product line of services may be at the level of just a single service
inside one product line—basically one feature where SOA is not a factor—or entire applications
may be fashioned by utilizing services from across the service product line. Service orientation in
the latter context becomes a variability mechanism.

The service product line could itself be used across multiple product lines. Services might not
even be bound within a domain of a particular product line. Microsoft offers the Workflow Foun-
dation to rapidly build activity-based applications. These are generally service oriented and may
in turn use BizTalk services to perform a variety of identity and connection management opera-
tions. Other examples might exist and enrich the understanding of product line and scope of ser-
vice applicability.

16 | CMU/SEI-2008-SR-006

5 Workshop Outcomes

The First Workshop on Service-Oriented Architectures and Product Lines (SOAPL) 2007 made
progress towards answering the two questions relating to the connections between SOA and prod-
uct lines:

1. Can services support product lines using an SOA?

2. How can use of product line practices support services and SOAs?

The accepted papers, located in Appendices A-E, provided a basis for identifying key issues relat-
ing to the workshop theme “Service-Oriented Architectures and Product Lines - What Is the Con-
nection?” Along with the workshop presentations described in Section 3, the papers helped estab-
lish topics for additional discussion at the workshop, as described in Section 4.

A look at the comparison of software product line and service-oriented modeling methods identi-
fied key issues in

• the perceived static focus of software product lines versus the dynamic focus of service-
oriented computing

• variability modeling in services

• the creation of standards for software product lines similar to those being developed for
services

Participants addressed features and variability issues by examining how software product line
practices might support the management of variability in service-oriented applications. For exam-
ple, could feature modeling be used to identify the variability points in the invocation of compos-
ite web services? Could this initial knowledge base be used to evaluate the different mechanisms
for implementing variability in composite web services and to identify factors that affect the se-
lection of such variability mechanisms?

Application examples addressed the challenges of dynamically managing services in an SOA-
based system:

• how product line engineering concepts can be used to identify and specify reusable ser-
vices—based on features

• how a service-oriented approach can be used to combine different products from different
product lines into a third product line

Additional discussions covered the use of services within a product line architecture, developing a
service as a product line, the dynamic aspects of SOA versus product lines, reusable services, the
perceived differences between reusable services and components in a product line, architectural
aspects of software product lines versus service-oriented computing, and the meaning of a service
product line.

 SOFTWARE ENGINEERING INSTITUTE | 17

The participants felt the goals of the workshop were addressed. The workshop offered an early
glimpse at how the SPL community looks at SOA. It examined tools and techniques currently in
progress and generated a list of open questions for future research directions. Most importantly,
the workshop provided the ability to network with others working on the same issues.

Several participants discussed follow-on work that should be monitored. Mikko Raatikainen plans
to work on “how to build configurable services” (i.e., understanding issues, the modeling of be-
haviors, tool support, and dynamic aspects). Jaejoon Lee will continue implementation of the
model and complete the current work described in the paper he presented. He will also start ex-
ploring platform issues (such as .net). Christian Kästner plans to implement the web portal of
portlets example and look at how to dynamically consume configured products from the product
line.

The workshop participants felt that this workshop should be followed up with a second SOAPL
workshop at the 12th International Software Product Line Conference (SPLC 2008), Limerick,
Ireland. Suggested changes for this workshop are

• Include SOA representations. The participants at this workshop primarily represented soft-
ware product lines. The second workshop should include experts in SOA to balance the dis-
cussions.

• Include a keynote speaker to open up the workshop.

• Invite and include more experience reports. The workshop papers should focus on experi-
ence reports rather than research or simply the connection between service-oriented architec-
tures and product lines.

• Invite a product line architect to address dynamic versus static issues.

18 | CMU/SEI-2008-SR-006

References

URLs are valid as of the publication date of this document.

[Clements 2001]
Clements, P. & Northrop, L. M. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2001.

[Fellner 2000]
Fellner, Klement J. & Turowski, Klaus. “Classification Framework for Business Compo-
nents.” Proceedings of the 33rd Hawaii International Conference on System Sciences. Waiko-
loa, HI, January, 2000. IEEE, 2000. http://ieeexplore.ieee.org/iel5/6709/20043/00927009.pdf

[KumbangTools 2008]
KumbangTools. http://www.soberit.hut.fi/KumbangTools (2008).

[SEI 2007a]
Software Engineering Institute. A Framework for Software Product Line Practice, Version
5.0, 2007. http://www.sei.cmu.edu/productlines/framework.html
Glossary. http://www.sei.cmu.edu/productlines/frame_report/glossary.htm
Training. http://www.sei.cmu.edu/productlines/frame_report/training.htm
Using Software Product Lines with Other Approaches. http://www.sei.cmu.edu/productlines
/frame_report/FAQ.htm#other_approaches

[SEI 2007b]
Software Engineering Institute. 11th International Software Product Line Conference.
http://www.sei.cmu.edu/productlines/SOAPL (2007).

[Skroch 2007]
Skroch, Oliver & Turowski, Klaus. “Improving Service Selection in Component-Based Ar-
chitectures with Optimal Stopping,” 39-46. 33rd EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA 2007). Lubeck, Germany, August, 2007. IEEE
Computer Society, 2007.

 SOFTWARE ENGINEERING INSTITUTE | 19

http://ieeexplore.ieee.org/iel5/6709/20043/00927009.pdf
http://www.soberit.hut.fi/KumbangTools
http://www.sei.cmu.edu/productlines/framework.html
http://www.sei.cmu.edu/productlines/frame_report/glossary.htm
http://www.sei.cmu.edu/productlines/frame_report/training.htm
http://www.sei.cmu.edu/productlines /frame_report/FAQ.htm#other_approaches
http://www.sei.cmu.edu/productlines /frame_report/FAQ.htm#other_approaches
http://www.sei.cmu.edu/productlines/SOAPL

20 | CMU/SEI-2008-SR-006

Appendix A: Software Product Lines and Service-Oriented
Architecture: A Systematic Comparison of Two
Concepts

Andreas Helferich, Georg Herzwurm and Stefan Jesse
Universität Stuttgart, Chair of Information Systems (Business Software),

Breitscheidstr. 2c, 70174 Stuttgart, Germany
{helferich,herzwurm,jesse}@wi.uni-stuttgart.de

ABSTRACT

Service-Oriented Architectures (SOA)
and Software Product Lines are two con-
cepts that currently get a lot of attention in
research and practice. Both promise to make
possible the development of flexible, cost-
effective software systems and to support
high levels of reuse. But at the same time
they are quite different from one another:
while Software Product Lines focus on one
producer alone developing a set of systems
based on a common platform (often in the
embedded systems-domain), most propo-
nents of SOA propose systems consisting of
loosely coupled services or company-wide
infrastructures including a variety of sys-
tems that are loosely coupled using services.
In any case, the services are usually devel-
oped by various companies. The focus of this
paper is the systematic comparison of these
concepts and an outlook on how Enterprise
Component Platforms could be created by
combining SOA and Software Product Lines.

A.1 INTRODUCTION

The focus of this paper is the systematic
comparison of Software Product Lines and
SOA. Specifically, the goal is to analyze
both concepts with two questions in mind:
1) Can web services support product lines
using a service-oriented architecture?

2) How can use of product line practices
support web services and service-oriented
architectures? Therefore, we briefly describe
Software Product Lines and SOA in Section
A.2 before comparing them using defined
criteria in Section A.3. Our conclusion in
Section A.4 recapitulates the findings, link-
ing them with the concept of Enterprise
Component Platforms. Also, an outlook on
further research that is necessary is given.

A.2 BRIEF PRESENTATION OF THE
CONCEPTS

A.2.1 SOA

“SOA is a conceptual business architecture
where business functionality, or application
logic, is made available to SOA users, or
consumers, as shared, reusable services on
an IT network. ‘Services’ in an SOA are
modules of business or application function-
ality with exposed interfaces, and are in-
voked by messages” [1]. Service-oriented
development essentially integrates disparate
heterogeneous software services from a
range of providers [2]. Thus, an SOA is a
means of designing software systems to pro-
vide services to either end user applications
or other services through published and dis-
coverable interfaces. There are several guid-
ing principles that define the ground rules

SOFTWARE ENGINEERING INSTITUTE | A-1

for development, maintenance, and usage of
the SOA. The guiding principles cover [3]:

• Reuse, granularity, modularity, compos-
ability, componentization, and interop-
erability,

• Compliance to standards (both common
and industry-specific),

• Service identification and categoriza-
tion, provisioning and delivery, and
monitoring and tracking.

The following specific architectural prin-
ciples for design and service definition focus
on specific themes that influence the intrin-
sic behavior of a system and the style of its
design. They are derived from the guiding
principles and cover [3]:

• Service encapsulation - Accessing func-
tionality through some well-defined in-
terface, the application being seen as a
black box to the user

• Service loose coupling - Services main-
tain a relationship that minimizes de-
pendencies and only requires that they
maintain an awareness of each other.

• Service contract - Services adhere to a
communications agreement, as defined
collectively by one or more service de-
scription documents.

• Service abstraction - Beyond what is
described in the service contract, ser-
vices hide logic from the outside world.

• Service reusability - Logic is divided
into services with the intention of pro-
moting reuse.

• Service composability - Collections of
services can be coordinated and assem-
bled to form composite services.

• Service autonomy – Services have con-
trol over the logic they encapsulate.

• Service statelessness – Services mini-
mize retaining information specific to
an activity.

• Service discoverability – Services are
designed to be outwardly descriptive so
that they can be found and assessed via
available discovery mechanisms.

While many early publications promote
SOA as some kind of silver bullet for build-
ing flexible applications and for integrating
different applications, newer publications
point out the problems resulting from this
architectural paradigm and Web Services as
the most prominent way of implementing an
SOA (e.g., [5], Chapter 4).

A.2.2 Software Product Lines

Exploiting commonalities between dif-
ferent systems is at the heart of Software
Product Line Engineering. Therefore, differ-
ent products of one domain (also referred to
as problem space or application range, e.g.,
operating systems for mobile telephones or
software support of the sales department) are
viewed as a family and not as single prod-
ucts. According to the SEI at Carnegie Mel-
lon University, Software Product Lines are
defined as “set of software-intensive sys-
tems sharing a common, managed set of
features that satisfy the specific needs of a
particular market segment or mission and
that are developed from a common set of
core assets in a prescribed way” (cf. [6], p.
5). The main elements of a Software Product
Line are the product line architecture and the
individual products which are part of the
product line. The product line architecture
describes the individual products, their
common components and the differences
between the products of the family (cf. [7]).
These commonalities and differences are
described using the core concept in Software
Product Line Engineering: variability. Vari-
ability describes the variations in (functional
as well as non-functional) features along the
product line: features are either a commonal-
ity or a variation [8].

Different process models exist for the devel-
opment process of product lines, e.g., those
described in [9], [10] or [11]. Common to
them is that the product line development

A-2 | CMU/SEI-2008-SR-006

process is modeled along the structure of a
product line. Just as the product line consists
of product line architecture and product line
members, the development process also con-
sists of the process of the development of
the product line architecture and the devel-
opment process of product line members.
The development of the product line archi-
tecture is called domain engineering and the
development of the product line members is
called application engineering. Preceding
both is the activity called scoping, that is the
process during which it is determined what
to develop, i.e., which products will be part
of the product line and what the commonal-
ities and variabilities will be. Since both
domain engineering and application engi-
neering encompass analysis, design, imple-
mentation and testing, the resulting model is
also called the two life-cycle model.

A.3 COMPARISON OF THE
 CONCEPTS

Having presented Software Product Lines
and Service-Oriented Architecture, we will
now compare these concepts and investigate
the commonalities and differences between
the concepts. To facilitate the comparison,
we use the following criteria:
• Goal: What exactly is the concept trying

to achieve?
• Defining features: What are the charac-

teristics of the concept that are at its
heart?

• Technical methods and elements: Which
Software Engineering methods and ele-
ments are used to develop systems in
this concept?

• Organizational methods and elements:
How is software development organized
according to this concept and which are
the key steps in the development proc-
ess?

• Field of application: In what kinds of
software is this concept primarily ap-
plied?

• Reuse methods and entities: All three
concepts have reuse in one way or an-
other as their goal, but the methods and
entities that are reused differ substan-
tially.

• Level of Abstraction: Which is the pri-
mary unit of analysis for reuse? Not
only methods and entities, even the
level of abstraction differs significantly.

• Examples: To illustrate the concepts,
some examples for real-world applica-
tion of each concept are presented here.

Table A-1 provides an overview of the
comparison using these criteria, whereas the
in-depth comparison follows in the remain-
der of this section.

The primary goal of Software Product
Lines is to promote reuse and thereby realize
gains in productivity, software quality and
time to market. More specifically, exploiting
the commonalities between related products
is the actual goal. To achieve this, rather
extensive analyzing and planning processes
for the whole set of systems to be developed
are performed. After that, the common archi-
tecture and the so-called core assets are de-
veloped in a generic way (domain engineer-
ing), before the systems belonging to the
product line are developed (application en-
gineering). Neither architecture nor core
assets are planned to be reused outside the
Software Product Line. The primary goal
behind SOA is to promote flexibility in in-
formation systems/corporate information
systems landscapes: today large enterprise
application packages and tight coupling be-
tween different packages and legacy systems
are prevalent, leading to problems whenever
a new system is introduced or business
needs require changes in existing systems
and/or their interfaces. SOA seeks to change
this by developing rather small services

 SOFTWARE ENGINEERING INSTITUTE | A-3

Table A-1: Comparison of the Concepts

Criteria Software Product Lines Service-Oriented Architecture

Goal Planned exploitation of commonalities within related
systems -> reuse

Use of services of fine granularity within (enterprise)
system landscapes -> flexibility

Defining
features

Variability; Family of related systems based on
common architecture

No common architecture, services are encapsulated
and loosely coupled

Technical
methods and
elements

Variation points and mechanisms, scoping, applica-
tion engineering, domain engineering

Reliance on generally accepted standards, additional
service registration and authentication services

Organizational
methods and
elements

Two life-cycle models: first domain engineering to
develop the assets to be reused, then application
engineering to derive the actual systems

Development as well as hosting of the services can be
distributed, only the light-weight interface and some
additional services (registry, authentication…) are pro-
vided

Reuse methods
and entities

Logical reuse of all kinds of assets (components,
test cases, analysis & design models), but only
within the product line

Services are physically reused, potentially by anyone,
and can be combined with other services into more
complex services

Level of
abstraction

Primarily family of systems and secondarily systems
within the family

 Single services (atomic or composed of services)

Examples Nokia cell phones, Cummins diesel engines Telecommunications provider

(potentially totally independent from each
other). These are published in a registry
(e.g., using the Standards WSDL and UDDI)
and can then be used by anyone within a
company or even world-wide (the so-called
service consumer). As Dietzsch [12] points
out, this kind of reuse is physical rather than
logical: the same entity provides the service,
not a copy of the entity (a reused component
is a copy of the original component used in
another piece of software, the service is re-
used by sending a request to the very same
service over the network/Internet). Such a
service can be part of a system, stand alone
or be a connector between two independent
systems. Additionally, a service can be
atomic or combine several services (compo-
sition of services).

 Software Product Lines are mainly fo-
cused on internal reuse of components in
another product, while the focus of Service-
Oriented Architecture is the reuse of compo-

nent-based software on a larger scale. The
creation of SOA-compliant component-
based software (e.g., Modules or Compo-
nents in Enterprise Resource Planning Soft-
ware like SAP) seems to become a popular
business model for companies, e.g., sub-
suppliers to SAP’s ERP system, that mainly
focus on the creation of reusable compo-
nent-based software but also for bigger
companies, enabling them to sell SOA-
compliant component-based software that
was developed in-house. Since this will
probably lead to customers combining ser-
vices from different suppliers, one could
also argue that reuse will actually become
less common: instead of a few large compa-
nies developing ERP systems and customers
buying the whole package, many other com-
panies can offer specialized services replac-
ing the service included in the package. This
does increase the choice for the customers,
but not the level of software reuse.

A-4 | CMU/SEI-2008-SR-006

 The defining feature of the concept of
Software Product Lines is variability (and
vice versa commonality) as defined by the
common and application-specific parts of
the systems that are part of the Software
Product Line; this includes defining a com-
mon architecture. This common architecture
is lacking SOA; one could even say that the
lack of a common architecture (since the
service could be used by anyone as part of
his/her system with its specific architecture)
is one of the defining features together with
the services being encapsulated and loosely
coupled. On the other hand, some of the as-
pects usually included in an architecture still
have to be specified for services in order for
them to be able to work together, e.g., mes-
saging (cf. [5]).

 The technical methods and elements
that are typical for the concepts are addi-
tional criteria we used: for Software Product
Lines, variation points and variation mecha-
nisms and the distinction between scoping,
domain engineering and application engi-
neering are the defining technical methods
and elements. While variation points and
variation mechanisms provide the opportu-
nity to efficiently handle the differences be-
tween the members of a product line, scop-
ing, domain engineering and application
engineering are distinct phases in the devel-
opment process where special methods for
Software Product Line Engineering are used
(see for example [6] for details). Since SOA
is a concept that is rather independent of the
development platform/language to be
used, the reliance on the architectural prin-
ciples mentioned in Section A.2.1 need to be
mentioned here. Additionally, standards such
as UDDI and WSDL are important and ab-
solutely necessary elements of SOA.

 Organizational methods and elements:
unlike the technical methods and elements,
the organizational methods and elements

define the way software development is or-
ganized. For Software Product Lines, the
key question here is how domain engineer-
ing and application engineering are organ-
ized: basically, they are separate develop-
ment cycles with application engineering
depending on the results of domain engi-
neering. This could, for example, lead to
separate teams responsible for domain and
application engineering. Another possibility
would include a separate team for domain
engineering, with a member of this team
being part of each application engineering
team. For an in-depth discussion of possible
ways to organize Software Product Line
Engineering see [13], but basically all possi-
bilities have their own advantages and dis-
advantages and their suitability depends on
the organization of the company as a whole.
For SOA, it is more difficult to make any
statements concerning the organization since
every service could be developed independ-
ently of all other services. But this implies a
decentralized organization with no central-
ized coordinating unit, since there is no
common architecture behind. For a company
reorganizing their own infrastructure in an
SOA-based way, there probably will be such
a centralized unit, but they might very well
use services that have been provided by
third parties that were not coordinated by
this unit. The reliance on additional services
such as a service registry and services for
identification or authentication implies sepa-
rate centralized organizational units provid-
ing these services to all other services.

 The reuse methods and entities differ
quite substantially: in a Software Product
Line, all kinds of assets are reused, not only
code, but also specifications, models (e.g., in
UML), test cases and (end user) documenta-
tion, but only within the Software Product
Line. In an SOA, the services are the main
reuse entity, and interestingly, the services
are physically and not only logically reused.

 SOFTWARE ENGINEERING INSTITUTE | A-5

Thereby, logical reuse is present, if a com-
ponent is replicated and delivered by the
manufacturer to the application developer.
By physical reuse however, the service is
invoked by remote call on demand [12]. In
this case the service, e.g., a single-sign-on
Web Service, is hosted by the manufacturer
of the software.

 Taking organizational methods and ele-
ments on the one hand and the reuse meth-
ods and elements on the other hand, one gets
the matrix shown in Table A-2.

Table A-2: Organizational Level of Reuse

Phase within
the two-
lifecycle model

Software
Product
Lines

Service-Oriented
Architecture

Development
for reuse

within
organiza-
tion

within organization
/ outside the
organization

Development
with reuse

within
organiza-
tion

outside the
organization

Closely related to the reuse entity is the level
of abstraction: all considerations for a
Software Product Line are based on the
product line as a unit of analysis, all deci-
sions on another level (product, component
or even function) are derived from the utility
on the product line level. As the name Ser-
vice-Oriented Architecture already implies,
single services are the main unit of analysis
in this concept, since a service can theoreti-
cally stand alone.

 Cummins diesel engines and Nokia cell
phones are just two examples for the appli-
cation taken from the Software Product Line
Hall of Fame [14]. One example of using
SOA in order to streamline business proc-
esses and to integrate various applications is
presented in [15], where a “large telecom-
munication wholesaler, supplying its ser-
vices to more than 150 different service re-

tailers, enhanced the process integration
capabilities of its core order management
system through wide-spread use of SOA,
business process choreography and Web
services concepts” [15].

A.4 CONCLUSION

 The goal of this paper was the systematic
comparison of Software Product Lines and
Service-Oriented Architectures. The com-
parison shows that the two concepts share a
number of characteristics, but differ signifi-
cantly in other characteristics. And where
they differ, they sometimes actually com-
plement each other, e.g., while Software
Product Lines do not focus on components
being marketable or developed in different
organizations, this is not explicitly excluded.
At the same time, many proponents of SOA
argue that SOA will lead to companies not
purchasing licenses for large application
packages but instead using services and pay-
ing per use of the services, thereby combin-
ing best-of-breed services from multiple
providers. Designing Software Product
Lines based on a Service-Oriented Architec-
ture with the possibility of replacing or ex-
tending existing functionality by services
offered by third-party providers opens a path
towards Enterprise Component Platforms
that we find very promising. This leads to
new research questions, e.g., on pricing of
services and the platform, security and
safety of the resulting systems, but also on
business models for Enterprise Component
Platforms. The large business software com-
panies, i.e., SAP, Oracle, IBM and Microsoft
have already invested large amounts of
money and effort into the transition of their
application packages into services, while
trying to maintain control over the resulting
platform and trying to create a network of
partners supporting the platform. SAP for
example uses the term business ecosystem
(cf. for example [16] and [17] for SAP’s

A-6 | CMU/SEI-2008-SR-006

strategy or [18] and [19] for a more theoreti-
cal viewpoint).

REFERENCES

[1] Marks, A. and Bell, M. Service-
Oriented Architecture: A Planning and
Implementation Guide for Business
and Technology, John Wiley & Sons,
New Jersey (2006).

[2] Cerami, E. Web Services Essentials -
Distributed Applications with XML-
RPC, SOAP, UDDI & WSDL,
O’Reilly, Beijing et al., 2002.

[3] Balzer, Y. Improve Your SOA Project
Plans, IBM, 2004. http://www-
128.ibm.com/developerworks/webservi
ces/library/ws-improvesoa/

[4] Erl, T. Service-Oriented Architecture:
Concepts, Technology, and Design,
Prentice Hall PTR, Upper Saddle
River, New Jersey, 2005.

[5] Kaye, D. Loosely Coupled: The Miss-
ing Pieces of Web Services, RDS
Press, Marin County, CA, 2003.

[6] Clements, P. and Northrop, L. Soft-
ware Product Lines: Practices and
Patterns, Addison-Wesley, Boston,
MA, 2002.

[7] Bosch, J. Design and Use of Software
Architectures, Addison-Wesley, Har-
low, 2000.

[8] Kang, K., Cohen, S., Hess, J., Novak,
W., & Peterson, S. Feature-Oriented
Domain Analysis (FODA) Feasibility
Study. (CMU/SEI-90-TR-021). Soft-
ware Engineering Institute, Pittsburgh,
PA (1990).

[9] Bayer, J. et al. “PuLSE: A Methodol-
ogy to Develop Software Product
Lines.” Proceedings of the 5th Sympo-
sium on Software Reusability, 1999,
pp. 122-131.

[10] Weiss, D. M., and Lai, C. T. R. Soft-
ware Product-Line Engineering: A
Family-Based Software Development
Process, Addison-Wesley, Reading,
MA, 1999.

[11] Muthig, D. A Light-Weight Approach
Facilitating an Evolutionary Transi-
tion Towards Software Product Lines.
PhD Thesis, Fraunhofer-IRB Verlag,
Stuttgart, 2002.

[12] Dietzsch, A. Systematische Wied-
erverwendung in der Software-
Entwicklung, PhD thesis, Deutscher
Universitäts-Verlag, Wiesbaden, 2002.

[13] Pohl, K., Böckle, G., & van der Lin-
den, F. Software Product Line Engi-
neering, Springer, Heidelberg, 2005.

[14] Software Engineering Institute, Car-
negie Mellon University: “Product
Line Hall of Fame.”
http://www.sei.cmu.edu/productlines/p
lp_hof.html, June 11, 2007.

[15] Zimmermann, O., Doubrovski, V.,
Grundler, J., Hogg, K. “Choreography
in an Order Management Scenario:
Rationale, Concepts, Lessons
Learned.” OOPSLA’05, October 16–
20, 2005, San Diego, CA, pp. 301-
312.

[16] Oswald, G. SAP Service and Support,
Galileo Press, New York, Bonn, 3rd
edition, 2006.

[17] Karch, S. and Heilig, L. SAP Net-
Weaver Roadmap, Galileo Press, New
York, NY, 2005.

[18] Gawer, A. & Cusumano, M. A. Plat-
form Leadership: How Intel, Microsoft
and Cisco Drive Industry Innovation.
Harvard Business School Pr., Boston,
MA, 2002.

[19] Baldwin, C. Y. and Clark, K. B. De-
sign Rules - The Power of Modularity.
MIT Press, Cambridge, MA, 2000.

 SOFTWARE ENGINEERING INSTITUTE | A-7

A-8 | CMU/SEI-2008-SR-006

Appendix B: A Taxonomy of Variability in Web Service Flows1

Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo Trinidad
Department of Computer Languages and Systems, University of Seville

email: {segura, benavides, aruiz, trinidad}@tdg.lsi.us.es

1 This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT

project Web–Factories (TIN2006-00472).

ABSTRACT

The combination of Software Product
Lines (SPLs) and Service-Oriented Architec-
tures (SOAs) development practices is ex-
pected to become a new development para-
digm maximizing reuse and business
integration. However, multiple issues must
be still addressed in order to clarify the
connections between both fields. One of the
key questions to answer is how SPL prac-
tices can be used to support service-oriented
applications. In this context, identifying and
managing the points of variability in com-
posite Web services emerges as an inevita-
ble step for making possible such integra-
tion. In this position paper we give a first
step toward such direction by introducing a
comprehensible overview of the main vari-
ability points in Web service flows.

B.1 INTRODUCTION

Software Product Lines (SPLs) [8] and
Service-Oriented Architectures (SOAs) [18]
approaches to software development pursue
different goals from a common perspective:
software reuse. On the one hand, SPLs focus
on managing commonalities and variabilities
among a set of related software systems. On
the other hand, SOAs enable assembly, or-
chestration and maintenance of service-
based solutions implementing business
processes.

Contributions about the connections be-
tween both development approaches, SPLs
and SOAs, are starting to emerge in the SPL
community [22]. However, multiple issues
must be still addressed for studying how
SPL practices could support the develop-
ment of service-oriented systems. In this
context, a relevant issue to be analyzed is
managing variations for specific customers
or market segments in SOA.

Service-oriented applications are not tied
to a specific technology. However, the most
common implementations of SOA-based
systems use Web services as a suitable inte-
gration technology. A Web service is a
software system designed to support inter-
operable machine-to-machine interaction
over a network using Web standards proto-
cols [2]. The main goal is to achieve inter-
operability among applications in a language
and platform independent manner. However,
the real strength of Web services is obtained
when combining them and orchestrating
them in order to deliver value-added ser-
vices. In this context, Web Service Flows
(WS-flows) are a common way of imple-
menting composite Web services in SOA.
WS-flows are composite Web services im-
plemented using a process-based approach.
Roughly speaking, a WS-flow process de-
fines an executable business process in
which participants are Web services.

 SOFTWARE ENGINEERING INSTITUTE | B-1

Research in the field of variability in
conventional Web services [12, 16, 19] and
process workflow [7, 10, 11, 15, 20] is
merely addressed in the literature. In [13] a
high level classification of approaches to
WS-flow adaptability is presented. A more
technological classification of WS-flow
variability points in service invocation is
introduced by IBM staff in [9]. However, an
explicit classification of the main variability
points in WS-flow is still missed.

In this paper we give a first step toward a
proposal for managing variability in WS-
flow in the context of SPLs and SOAs. In
particular, we first introduce WS-flow and
BPEL. Secondly, we describe and classify
the main variability points in WS-flow. The
goal is to provide the starting point for a
base of knowledge about variability in WS-
flows that can be later used for both: 1)
evaluating the different mechanisms for im-
plementing variability in WS-flow and 2)
identifying factors that affect the selection of
such variability mechanisms.

The remainder of this paper is organized
as follows: In Section B.2 WS-flows and
BPEL are introduced. The main variability
points identified in WS-flows are described
in Section B.3. Finally, we summarize our
main conclusions and describe our future
work in Section B.4.

B.2 WEB SERVICE FLOWS

A Web Service Flow (WS-flow) is a com-
posite Web service implemented using a
process-based approach [13]. Similar to
conventional process workflow, WS-flows
specify a set of tasks which are executed by
the participants of a process. Additionally, a
WS-flow defines the execution order of
tasks, the data exchange among the partici-
pants and the business rules. In contrast with
traditional workflows, the main characteris-

tic of a WS-flow is that it works mainly with
a single type of participant: Web services.
Figure B-1 depicts an example of a WS-flow
of a travel agency for travel arrangement. The
WS-flow invokes the Web services of differ-
ent airlines, car rental companies, and hotels
offering to the customer a value-added ser-
vice for travel reservation.

There exist multiple proposed languages
for defining WS-flows such as WSCI [21],
BPML [4] or BPEL [14]. However, the Busi-
ness Process Execution Language (BPEL) is
recognized as de facto standard in this area.
BPEL introduces basic and structured activi-
ties, control structures such as loops and con-
ditional branches, synchronous and asyn-
chronous communication, etc. Although
BPEL processes are defined in XML format,
most development IDEs provide a graphical
notation for it. Once a BPEL process is de-
fined it can be executed in any BPEL-
compliant execution engine such as active-
BPEL [1]. The execution engine orchestrates
the invocations to the participant’s Web ser-
vices according to the process definition.

B.3 VARIABILITY IN WS-FLOWS

In this section we explore the main vari-
ability points in WS-flow. In particular, we
focus on the variability in the invocation of
services and the workflow structure. Vari-
ability in other advanced aspects of services
such as security is out of the scope of this
paper because of space constraints.

B.3.1 Service invocation

A service invocation is an activity in which
the workflow invokes another service and
exchange messages with it returning control
back to the workflow. Figure B-2 summa-
rizes the main variability points identified in
the invocation of services using a feature
model. In particular, we have identified

B-2 | CMU/SEI-2008-SR-006

Client

Figure B-1: A Possible WS-Flow for Travel Arrangement

Service Invocation

Partner Selection Protocol

Partner Selection Criteria

Message Exchange

Evaluation Context Definition Time

Hard-coded Delegated

Synchronous Asynchronous SOAP/HTTP

SOAP/JMS SOAP/SMTP

XML/HTTP

Design-time Run-time

User-Driven Automated Run-timeDesign-time

Binding Time

Figure B-2: Variability Points in Service Invocation

four main variability points:

• Binding Time. The selection of the ser-
vice to invoke can be performed either
during the development or the execu-
tion of the workflow. In the first case,
the service reference is defined in de-
sign-time forcing to redeploy the work-
flow if changes in the participants need
to be done. On the other hand, most
flexible approaches propose selecting
participants in run-time making the ap-
plication adaptable to changes in the
execution environment. Additionally,

partner selection during run-time can
be performed either by the user or
automatically according to some selec-
tion policies. Figure B-3 shows a pos-
sible implementation of run-time auto-
mated partner selection using a so-
called service registry [3]. First, the in-
formation of the services (e.g., different
airline Web services) is registered in a
service registry. Then, the workflow
sends a query to the registry to deter-
mine a matching service according to a
set of parameters (e.g., a service with
time of response ≤ 10s) and the prede-

 SOFTWARE ENGINEERING INSTITUTE | B-3

fined selection policies. Finally, the
service reference obtained as a result of
the query is used to invoke the match-
ing service.

• Partner Selection Criteria. Selection
criteria help to determine which of the
available services offering the same
functionality will be selected for its in-
vocation [17]. In this context, two main
variability points are identified:

Evaluation Context. Selection criteria
can be either hard-coded in the work-
flow or delegated to an external entity.
The first option is very limited since
workflow and selection criteria are
highly coupled. On the other hand, de-
fining the selection criteria in an inde-
pendent manner is a preferred approach
since it allows managing changes more
efficiently. Figure B-4 depicts an ex-
ample in which the selection criteria
are defined out of the scope of the
workflow. Notice that changes in the
selection criteria would be welcome
since they would not affect the work-
flow.

Definition Time. Selection criteria can
be modified either in design-time or
run-time. Similar to the partner selec-
tion, the first option forces the workflow
to redeploy to respond to changes.
Meanwhile, the second alternative is
much more flexible since it allows

adapting the process workflow dynami-
cally.

• Messages Exchanged. Messages ex-
changed between executable service
workflows and other services are typi-
cally performed using two different
communication patterns: synchronous
or asynchronous. Synchronous re-
quest/response message exchange con-
sists of sending a request message to
the service and waiting for it to re-
spond. Although this is the most com-
mon and natural approach, it is clearly
not feasible if the services require sig-
nificant time to respond since it blocks
the workflow processing. Hence, when
the participants’ services can take a
long time to respond and such response
is not needed for workflow processing,
an asynchronous pattern is typically
used.

In the asynchronous model the com-
munication is performed between two
workflows, the so-called service pro-
vider and service requestor or client. In
this situation, the client need not block
the call. Instead, the client implements
a callback interface, and once the re-
sults are available, the service provider
simply makes a callback invocation on
the client. Figure B-5 illustrates an ex-
ample of asynchronous message ex-
change.

2. Query

3. Uses

Service Registry

Figure B-3: Service Registry

1. Register
 Services
 Information

B-4 | CMU/SEI-2008-SR-006

If from = Europe

If from = Asia
Trader

If from = Africa

Figure B-4: Workflow-Independent Selection Criteria

Request

Call-back

Service ProviderClient

Figure B-5: Asynchronous Model

• Protocols. Multiple protocols can be
used for service interactions over a net-
work, i.e., SOAP/HTTP, SOAP/JMS,
XML/HTTP, etc. Thus, the selection of
a suitable set of protocols for the com-
munication with services is a key vari-
ability point.

B.3.2 Process Workflow Structure

The process workflow structure deter-
mines all the aspects related to the way in
which the process is executed: the execution
order, the data exchange between partici-
pants, the business rules, the errors treat-
ment, etc. Hence, two main variability
points are identified in this context:

• Control Flow. The workflow structure
determines the tasks to be executed, the
execution order, and even the partici-
pant in the process. Therefore, the con-
trol flow will commonly have locations
likely to change in response to changes
in the business process. Hence, for in-
stance, suppose the travel agency de-
cides to change the order in which
flight fares are consulted for certain
customers, e.g., prioritizing low-cost
airlines for young people.

• Data Flow. During the execution of a
WS-flow, participants exchange differ-
ent kinds of data in XML format. Simi-
lar to the control flow, data is likely to
change as a consequence of implement-

 SOFTWARE ENGINEERING INSTITUTE | B-5

ing changes in the business process. As
an example, suppose the travel agency
is asked to provide additional security
information in the cases in which pas-
sengers travel to a specific country.

B.4 CONCLUSIONS AND FUTURE
 WORK

In this paper we expose the need for an
explicit classification of variability points in
WS-flow as a starting point for handling
variability through services in the context of
SPLs and SOAs. In particular, we identify
and classify the main variability points in
the invocation of services and the workflow
structure. In some cases the distinction be-
tween development-time and run-time is
exposed explicitly because of its relevance.
However, we emphasize that the time in
which variability is resolved will depend
mainly on the technology used.

Many challenges remain for our future
work. Once the main variability points are
identified, it will be necessary to consider
the available technological approaches for
implementation. Hence, we are already
evaluating the different implementation pro-
posals and are paying special attention to the
way in which they support the variability
points presented in this paper.

Finally, our main goal is to develop a proto-
type development tool for the generation of
a SPL of composite Web services. Although
our work is still immature, we plan to de-
velop a framework for the automated or
semi-automated generation of BPEL code
from a given extended feature model [6].
The framework will implement a core busi-
ness process in which variable parts will be
generated automatically according to the
feature selection. For such purposes, we will
start by associating features and feature at-

tributes to Web services and Quality-of-
Service (QoS) parameters respectively [5].

REFERENCES

[1] ActiveBPEL. www.activebpel.org/.

[2] G. Alonso, F. Casati, H. Kuno, and V.
Machiraju. Web Services: Concepts,
Architectures and Applications.
Springer-Verlag, 2004.

[3] D. Ardagna and B. Pernici. “Adaptive
Service Composition in Flexible Proc-
esses.” IEEE Transactions on Soft-
ware Engineering, 33(6): 369–384,
2007.

[4] A. Arkin. “Business Process Modeling
Language (BPML).” Version 1.0,
2002. http://www.bpmi.org/.

[5] D. Benavides, A. Durán, M. A.
Serrano, and C. Montes-Oca. “Quality
of Service Variability in System Fami-
lies Based on Web Services.” In
Simposio de Informática y
Telecomunicaciones SIT 2002, pages
205–218, Sevilla, Spain, 2002.

[6] D. Benavides, A. Ruiz-Cortés, and P.
Trinidad. Automated reasoning on fea-
ture models. LNCS, Advanced Infor-
mation Systems Engineering: 17th In-
ternational Conference, CAiSE 2005,
3520: 491–503, 2005.

[7] F. Casati, S. Ilnicki, L. Jin, V. Krish-
namoorthy, and M. Shan. “Adaptive
and Dynamic Service Composition in
eFlow.” In Conference on Advanced
Information Systems Engineering,
volume 1789, pages 13–31. Springer
Verlag, 2000.

[8] P. Clements and L. Northrop. Soft-
ware Product Lines: Practices and
Patterns. SEI Series in Software En-
gineering. Addison–Wesley, August
2001.

B-6 | CMU/SEI-2008-SR-006

[9] G. Goldszmidt and C. Osipov. “Make
Composite Business Services Adapt-
able with Points of Variability. Choos-
ing the Right Implementation.” IBM,
April 2007.
http://www.ibm.com/developerworks/l
ibrary/ar-cbspov1/.

[10] Y. Han, A. Sheth, and Chr. Bussler.
“A Taxonomy of Adaptive Workflow
Management.” In CSCW-98 Work-
shop, Towards Adaptive Workflow
Systems, 1998.

[11] P. Heinl, S. Horn, S. Jablonski, J.
Neeb, K. Stein, and M. Teschke. “A
Comprehensive Approach to Flexibil-
ity in Workflow Management Sys-
tems.” SIGSOFT Soft. Eng. Notes,
24(2): 79–88, 1999.

[12] A. Ruokonen, J. Jiang, & T. Systa.
“Pattern-Based Variability Manage-
ment in Web Service Development.”
IEEE, November 2005.

[13] D. Karastoyanova and A. Buchmann.
“Extending Web Service Flow Models
to Provide for Adaptability.” Proceed-
ings of the OOPSLA ’04 Workshop on
Best Practices and Methodologies in
Service-oriented Architectures: Pav-
ing the Way to Web Services Success,
Vancouver, Canada, October 2004.

[14] OASIS. “Web Services Business
Process Execution Language Version
2.0,” May 2006. http://www.oasis
open.org/.

[15] M. Reichert and P. Dadam. “ADEPT
Flex-Supporting Dynamic Changes of
Workflows Without Losing Control.”
Journal of Intelligent Information Sys-
tems, 10(2): 93–129, 1998.

[16] S. Robak and B. Franczyk. “Modeling
Web Services Variability with Feature
Diagrams.” In Revised Papers from
the NODe 2002 Web and Database-
Related Workshops on Web, Web-

Services, and Database Systems,
pages 120–128, London, UK, 2003.
Springer-Verlag.

[17] A. Ruiz-Cortés, O. Martín-Díaz, A.
Durán-Toro, & M. Toro. “Improving
the Automatic Procurement of Web
Services Using Constraint Program-
ming.” Int. J. Cooperative Inf. Syst,
14(4): 439–468, 2005.

[18] E. Thomas. Service-Oriented Archi-
tecture: A Field Guide to Integrating
Xml and Web Services. Prentice Hall,
2004.

[19] N. Yasemin Topaloglu and R. Capilla.
“Modeling the Variability of Web
Services from a Pattern Point of
View.” In ECOWS, pages 128–138,
2004.

[20] van der Aalst, W. M. P. and Jablonski,
S. “Dealing with Workflow Change:
Identification of Issues and Solutions.”
International Journal of Computer
Systems Science and Engineering,
15(5): 267–276, September 2000.

[21] W3C. “Web Service Choreography
Interface 1.0,” August 2002.
http://www.w3.org/TR/wsci/.

[22] C. Wienands. “Synergies Between
Service-Oriented Architecture and
Software Product Lines,” 2006. Sie-
mens Corporate Research. Princeton,
NJ.

 SOFTWARE ENGINEERING INSTITUTE | B-7

B-8 | CMU/SEI-2008-SR-006

Appendix C: Comparison of Service and Software Product
Family Modeling

Mikko Raatikainen, Varvana Myllärniemi, Tomi Männistö
Helsinki University of Technology

Software Business and Engineering Institute (SoberIT)
P.O. Box 9210, 02015 TKK, Finland

{mikko.raatikainen, varvana.myllarniemi, tomi.mannisto}@tkk.fi

ABSTRACT

Service-oriented computing develops appli-
cations by composing services. In software
product families, applications are developed
by reusing existing assets. Hence, the ap-
proaches seem to have several similarities,
although there are also differences. In this
position paper, we discuss modeling meth-
ods in these two approaches. We conclude
with directions for future studies for combin-
ing modeling in software product families
and service-oriented computing that include
variability modeling in service-oriented
computing, behavior modeling and analysis
in software product families, correct model-
ing concepts, unification modeling concepts
in software product families, and reuse and
a combination of methods between ap-
proaches.

C.1 INTRODUCTION

Service-oriented computing is a computing
paradigm that utilizes services as fundamen-
tal elements for developing applications
[24]. The vision of such a service is to be in
place, and the service must have readily
available functionality and be a platform-
agnostic, self-describing, and location trans-
parent computational element that supports
rapid, low-cost composition of distributed
applications. Typically, a service represents
a business process. Service-oriented archi-

tecture (SOA) refers to a loosely coupled
architectural style for services [24, 20]. The
applications in service-oriented computing
are developed by combining multiple ser-
vices into one application [19].

A software product family, in turn, refers to
a set of software products that share a com-
mon, managed set of features satisfying the
specific needs of a particular market seg-
ment or mission and that are developed from
a common set of assets in a prescribed way
[8]. We consider “software product line” to
be a synonym for “software product family.”
Software product family architecture and
assets are developed in a special domain
engineering phase. The products of a soft-
ware product family are derived by reusing
assets and potentially developing additional
software. A key facilitator for efficient reuse
in a software product family is managing
variability within the assets. Variability is an
asset’s ability to be extended, changed, cus-
tomized, or configured efficiently for use in
a particular context [30]. Domain engineer-
ing aims at introducing needed variability
into the assets. Variability is bound when
assets are reused in product derivation.

These two approaches seem to have a great
deal in common. For example, both aim at
efficiently developing applications from
existing pieces of software. However, there
are also differences. For example, typically,

 SOFTWARE ENGINEERING INSTITUTE | C-1

services are dynamic computational ele-
ments composed into applications, whereas
the products in a software product family are
usually derived by reusing and resolving
variability in static elements, often referred
to as components.

Specifically, in both approaches, different
kinds of modeling have received a great deal
of interest. Within software product fami-
lies, several variability modeling approaches
have emerged; services rely on descriptions
of services and modeling their compositions
in order to develop applications. In addition,
WS-* standards [10, 37] essentially define
different languages for expressing different
aspects of services as models. Since the ap-
proaches share commonalities, it seems that
the modeling methods of one approach
could take advantage of modeling methods
in the other approach.

In this position paper, we discuss the simi-
larities and differences in service-oriented
computing modeling and software product
family modeling. We begin by briefly de-
scribing modeling in software product fami-
lies and service-oriented computing in Sec-
tions C.2 and C.3, respectively. Section C.4
compares the similarities and differences of
the modeling methods in the two ap-
proaches. In Section C.5, we discuss the
approaches in terms of how they could bene-
fit from modeling methods used in the other
approach. Finally, Section C.6 draws con-
clusions for future directions in combining
modeling in service-oriented computing and
software product families.

C.2 SOFTWARE PRODUCT FAMILY
 MODELING

For a software product family model, it is
important to be able to express what kind of
product variants can be derived from the

assets at hand. Therefore, many modeling
approaches for software product families
concentrate on introducing variability. In
this section, we outline different kinds of
variability modeling approaches.

Typically, there is a differentiation between
a software product family model, which
contains variability, and a product model, in
which variability is bound. Thus, a product
family model expresses the rules and rela-
tionships of how model elements can be
combined within the product model,
whereas a product model is an instantiation
of the family model. This differentiation
adheres to the separation of domain engi-
neering and product derivation in a software
product family.

Variability in a software product family en-
compasses all software artifacts from re-
quirements to code (cf. e.g., [8, 26]). Thus,
there are numerous modeling methods that
aim at modeling variability within different
artifacts and at different levels of abstrac-
tion.

One of the first approaches to concentrate on
modeling variability is FODA feature mod-
eling [17]. A feature can be defined as a user
visible characteristic of a system. A feature
model is typically a tree in which selections
are made as to whether to include features in
certain branches or leaves of a product. Sev-
eral extensions to the original feature model-
ing have been proposed [9, 18, 1]. In addi-
tion, work has been carried out to study or
formalize different feature modeling meth-
ods [14, 1]. Besides features, requirements-
level artifacts have also been proposed to be
modeled utilizing use cases [12, 11].

At the architectural level, Koala [36] is one
of the first modeling methods that explicitly
supports architectural variability. Others

C-2 | CMU/SEI-2008-SR-006

include [32, 34, 2, 15]. Thiel and Hein [32]
present an approach that adheres to and ex-
tends the IEEE standard for documenting
software architecture using viewpoints [16].
In addition, approaches have been intro-
duced that provide integrated feature model-
ing and architectural modeling, which means
that relations between features and architec-
tural elements can be modeled explicitly [2,
15].

In addition to the above methods, which
include constructs for modeling software
artifacts and variability in the same model,
different modeling approaches that augment
software artifact models with variability
specific models have been developed. The
artifact models can be UML or other generic
software engineering modeling approaches.
For example, orthogonal variability model-
ing (OMV) [26] describes only variability
and constraints within variability in a sepa-
rate model from software artifacts. This
variability model is then used to refer to,
e.g., component or process models to ex-
press the variability in such a model. Cova-
mof [28] is another approach that has a simi-
lar variability model, but constraints are
expressed in yet another model.

General-purpose modeling methods, such as
UML, lack specific concepts and constructs
for modeling the variability of a software
product family, but certain UML constructs
can be used to do so. Hence, primarily, they
are not meant to be used for modeling vari-
ability, although they can be used to model
the products of a software product family.
Further, extensions to UML have been pro-
posed to model variability [11]. In addition,
since software product family development
can be considered a special case of software
engineering, the commonalities, i.e., the
parts that do not contain variability, are fea-
sible to model using existing software engi-
neering methods, such as UML.

C.3 SERVICE-ORIENTED
 COMPUTING MODELING

In the following, we outline modeling in
service-oriented computing. We aim to pro-
vide a general description. However, since
Web services are currently the dominant
implementation of service-oriented comput-
ing, most modeling approaches focus on
them. In addition, most concrete modeling
approaches are developed for Web services.
Hence, the description is based mainly on
Web service modeling. Nevertheless, it
seems that similar approaches are used in
other kinds of service-oriented computing as
well.

Modeling in service-oriented computing is
typically driven by different standards, such
as WSDL and BPEL in Web service model-
ing. However, the standards are not estab-
lished or do not typically go through a rigor-
ous standardization process [37].
Nevertheless, the different methods are de-
veloped within a community, such as the
World Wide Web Consortium (W3C) [31].
The notation used for models is usually
XML, although some graphical notation is
used as well.

Services differentiate between the descrip-
tion and implementation of a service: A ser-
vice description is a model of the service
consisting of the service capabilities, inter-
face, behavior, and quality [23]. On the basis
of the service description, the service can be
used, i.e., found, bound, and composed in an
application. The state of the art in Web ser-
vices is to use WSDL in service descriptions
[39, 33]. WSDL is an XML-based notation.
However, current WSDL and many other
descriptions have limitations in describing
semantics of the service [33].

Service compositions describe how services
and operations of services are glued together

 SOFTWARE ENGINEERING INSTITUTE | C-3

to provide composite services. That is, a
composition model of services specifies the
order in which the service operations are
executed in a composite service or an appli-
cation [29]. Several different service compo-
sition approaches have been presented, such
as BPEL [5] and OWL-S [22].

Besides simple service composition, exten-
sions have been proposed to cover concepts
at a more abstract level. Typically, such
concepts try to model business processes.
Orriens et al. [21] present a business col-
laboration development framework and
modeling method including language for
specifying rules. The framework takes into
account different levels of abstraction and
different points of view. Business-driven
automated composition is another approach
that roughly means specifying requirements
at the business level and then, from the re-
quirements, deriving service composition
automatically [25]. Business Process Model-
ing Notation (BPMN) [6] of OMG provides
notation for a high-level description of a
business process. In addition, a mapping
from BPMN to BPEL providing automatic
generation has also been described [38].

Several different aspects for Web services
are described in specifications referred to as
WS-*. However, there are numerous differ-
ent specifications, and few of them have
gained an established position despite being
called standards [37].

C.4 COMPARISON

Software product family modeling and ser-
vice modeling have several similarities but
also differences. In this section, we compare
these similarities and differences.

C.4.1 Domain and Product Modeling

Software product family modeling involves
domain and product models. The entities of
domain modeling are instantiated in product
models. However, the main focus in soft-
ware product families is on modeling the
domain and describing the variability of a
software product family. Further, not all
approaches explicitly address instance mod-
els. Service-oriented computing focuses
mainly on modeling the products, i.e., ser-
vice compositions. Despite service models
using WSDL being considered models of
reusable entities, there is no modeling of
possible service compositions or rules for
service composition similar to models con-
taining variability in software product fami-
lies.

C.4.2 Composition vs. Decomposition

A software product family typically decom-
poses artifacts into fine grained artifacts,
whereas service-oriented computing is a
bottom-up compositional approach to com-
bine artifacts into larger entities. Decompo-
sition or top-down modeling means that a
software product family architecture speci-
fies the decomposition of a family into ar-
chitectural components. However, there are
also software product family approaches,
such as product populations modeled using
Koala [35], in which the approach is a mix-
ture of bottom-up and top-down approaches.
In service-oriented computing, there is typi-
cally no special architecture that specifies
the decomposition. Rather, the SOA defines
only architectural style for applications, and
application development is a compositional
approach from small services into larger
composite services that finally form the ap-
plications. The models in service-oriented
computing are developed similarly to de-
scribe such compositions bottom up from
single services to compositions of service.
However, technically, there is nothing to

C-4 | CMU/SEI-2008-SR-006

prevent decomposition in services or com-
position in software product families.

C.4.3 Modeling Concepts

Both approaches use different modeling arti-
facts, such as those corresponding to re-
quirements and executable software entities.
However, both approaches focus primarily
on modeling concerns at architectural level
entities: In service-oriented computing,
these are services, while in software product
families, these are different kinds of archi-
tectural entities, such as processes and com-
ponents. Central in both approaches are also
entities roughly corresponding to require-
ments, i.e., features in software product
families and business processes in service-
oriented computing. Modeling in a software
product family, especially in case of OVM
[26], can also take into account software
models such as detailed design artifacts. The
main difference is that modeling in a soft-
ware product family concerns different
kinds of entities, including static and dy-
namic ones, whereas service-oriented com-
puting models concerns only dynamic enti-
ties. Typically, software product families
focus on static entities.

C.4.4 Relations in Models

Both software product families and service-
oriented computing model basic relations
between entities, such as the compositional
structure of components or services and
connections between the interfaces of com-
ponents or services. In addition, both ap-
proaches aim at relationships between the
requirements models and the implementa-
tion models. Such relationships can be used
to generate the composition of lower-level
entities. That is, from features can be de-
rived component compositions in software
product families, and from business proc-
esses can be derived service compositions in

service-oriented computing. However, in a
software product family, also modeled are
more complex relations such as required or
excluded relations in a variability model.

C.4.5 Modeling Notations

Software product families rely on different
kinds of modeling notation, some of which
build on or augment state of the practice
notations, such as UML, and some being
peculiar to software product families, such
as feature modeling. Typically, such nota-
tion has graphical syntax, although its tex-
tual counterpart is sometimes also specified.
Often, each variability modeling approach
introduces its own notation or at least
changes existing notation a bit. Service-
oriented computing, in turn, relies mainly on
XML-based notation. Consequently, the
modeling notation in software product fami-
lies and service-oriented computing differ
quite significantly.

C.4.6 Establishment

Software product family modeling is charac-
terized by different modeling initiatives,
whereas service-oriented computing strives
for standards. However, the standards in
service-oriented computing are not clearly
established. Instead, there are several com-
peting standards. Frequently, standardiza-
tions merely claim a notation to be standard
without passing through a rigorous stan-
dardization process. Nevertheless, the mod-
eling approaches in service-oriented com-
puting are often created by a community or
at least several companies, whereas for
software product families, the modeling
methods are created by individual research-
ers or research groups. For example, numer-
ous different feature modeling methods have
been proposed that do not differ signifi-
cantly from each other [1].

 SOFTWARE ENGINEERING INSTITUTE | C-5

C.4.7 Stakeholders

Software product family modeling takes into
account a wider scope of stakeholders than
is typically done in service modeling. That
is, software product family modeling ad-
heres to conventions of viewpoint-based
software architecture description that ac-
knowledge a large group of different stake-
holders (cf. [7, 27]). Software product fam-
ily modeling takes into account stakeholders
from developers to customers. Service orien-
tation, in contrast, typically does not address
operation or deployment; hence, modeling
is, in that respect, more limited.

C.5 DISCUSSION

A major difference between the approaches
from the service point of view is the lack of
domain modeling or variability modeling in
service-oriented computing, although ser-
vice-oriented computing aims at efficiently
composing different composition services,
i.e., product variants, from existing services.
Such a variability model would express rules
for different applications or service compo-
sitions.

On the one hand, service-oriented comput-
ing is, in principle, a compositional ap-
proach in which services are composed to
applications. Hence, establishing a domain
model in service-oriented computing would
restrict the composition and would stand in
stark contrast to service composition princi-
ples.

On the other hand, service-oriented comput-
ing is usually applied in the context of busi-
ness processes. It seems that such processes
have several constraints in terms of how
they can be composed. The constraints may
originate from meaningful process order,
i.e., some information needs to exist before a
process can proceed - from policies set by a

company, i.e., certain information may not
be shared with outsiders. Therefore, it seems
feasible to introduce domain modeling in
service-oriented computing to constrain ser-
vice composition at least to certain applica-
tion domains.

In addition, although originally software
product families have been strictly decom-
position-driven approaches such that the
products of a software product family are
determined by the software product family
architecture [3, 8], recently different initia-
tives toward more composition-oriented ap-
proaches have been proposed [35, 4]. Con-
sequently, a challenge also to variability
modeling is to develop methods that do not
require strict structural architecture but
rather enable the expression of principles,
design rules, and design constraints [4].

From the point of view of software product
families, modeling in service-oriented com-
puting seems more restricted in terms of
scope, which focuses, at the architectural
level, mainly on the behavior of systems.
That is, there are several different view-
points adhering to the concept of an archi-
tectural viewpoint that can be used to model
a software product family, whereas service-
oriented computing models mainly behavior
at the level of service and business proc-
esses. However, software product families
typically concentrate on the static modeling
of components, and other concepts have not
received as much attention. In fact, many
architectural variability modeling methods
contain constructs primarily for static ele-
ments. Hence, the modeling concepts for
modeling dynamic aspects in software prod-
uct families could be taken from service-
oriented computing.

Further, service-oriented computing studies
different kinds of verification techniques for
behavior [25, 19]. These techniques could

C-6 | CMU/SEI-2008-SR-006

also be applied to verification of the applica-
tion of a software product family.

In addition, at the level of user visible char-
acteristics, software product families pre-
dominantly rely on feature models, although
use cases and other methods have been pro-
posed as well. Nevertheless, other modeling
concepts that could be used in software
product families are business process model-
ing of services. In particular, business proc-
ess modeling seems feasible for software
product families of information systems.

This plethora of modeling concepts in soft-
ware product families and the few concepts
in service-oriented computing raises the
question of what modeling concepts should
be used in service-oriented computing or
software product families. Not all modeling
concepts of software product families are
directly applicable to service-oriented com-
puting. Nevertheless, it seems that service
modeling could be based on a similar view-
point-based approach [16], as architectural
modeling can also be applied in software
product families. However, the modeling
concepts of service-oriented computing can
be at least partially different than those typi-
cally applied in software architecture model-
ing. For example, four different viewpoints
have been proposed for configurable service
modeling [13].

A notable difference is that modeling in ser-
vice-oriented computing is mostly based on
XML-based languages and developed within
a certain kind of community, although such
a community can be relatively small [37].
Some methods have gained an established
position relatively quickly such as BPEL or
WSDL. Typically such methods are de-
scribed thoroughly in standards, and many
are familiar with them. Within software
product families similar established nota-
tions are lacking. Instead, there is a plethora

of different notations, which differ from
each other slightly and which are even hard
to differentiate from each other. Established
methods are needed in service-oriented
computing, since such service can be devel-
oped by different parties. Software product
families differ in that they are not typically
intra-organizational, hence understanding of
the methods need not, in that respect, be as
wide. Nevertheless, since service-oriented
computing has succeeded in achieving such
established forms of notation, it seems that
software product family modeling could also
aim at a more coherent conceptual basis and
notation. This is especially needed, if vari-
ability modeling is to be applied in a wider
context than intra-organizationally, such as
in service-oriented computing.

Finally, despite the differences, combined
modeling methods could be developed, e.g.,
for behavior modeling, in which the same
concepts are used for software product fami-
lies and service-oriented computing. Such an
approach could even combine notation:
modeling in software product families could
provide graphical representations, whereas
modeling in service-oriented computing
could provide the textual format.

C.6 CONCLUSIONS

In this paper, we discussed and compared
modeling in service-oriented computing and
software product families. While the aim of
both approaches is relatively similar, there
are notable differences. This study suggests
the following challenges for further study:
First, extensibility and feasibility of variabil-
ity modeling should be studied in the con-
text of service-oriented computing. Second,
variability modeling in software product
families should take a lesson from behavior
modeling and analysis of services and busi-
ness processes in service-oriented comput-
ing. Third, the necessary concepts for the

 SOFTWARE ENGINEERING INSTITUTE | C-7

modeling of services and software product
families should be studied more thoroughly.
Fourth, variability modeling in software
product families should aim toward unifying
the fragmented conceptual foundations and
notation. Finally, it seems feasible for both
approaches to apply and reuse modeling
methods from other approaches.

ACKNOWLEDGMENTS

The authors acknowledge the financial sup-
port of Tekes, the Finnish Funding Agency
for Technology and Innovation.

REFERENCES

[1] T. Asikainen, T. Männistö, and T.
Soininen. A unified conceptual foun-
dation for feature modeling. Software
Product Line Conference, 2006.

[2] T. Asikainen, T. Männistö, and T.
Soininen. Kumbang: A domain ontol-
ogy for modeling variability in soft-
ware product families. Advanced En-
gineering Informatics, 21(1), 2007.

[3] J. Bosch. Design and Use of Software
Architecture. Addison-Wesley, 2000.

[4] J. Bosch. The challenges of broaden-
ing the scope of software product
families. Communications of the
ACM, 49(12), 2006.

[5] BPEL.
www.ibm.com/developerworks/librar
y/ws-bpel/. visited June 2007.

[6] BPMN. http://www.bpmn.org/. vis-
ited June 2007.

[7] P. Clements, D. Garlan, L. Bass, J.
Stafford, R. Nord, J. Ivers, and R. Lit-
tle. Documenting Software Architec-

tures: Views and Beyond. Pearson
Education, 2002.

[8] P. Clements and L. M. Northrop. Soft-
ware Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[9] K. Czarnecki and U. W. Eisenecker.
Generative programming: methods,
tools, and applications. ACM
Press/Addison-Wesley, 2000.

[10] T. Erl. Service-Oriented Architecture:
A Field Guide to Integrating XML
and Web Services. Prentice Hall PTR,
2004.

[11] H. Gomaa. Designing Software Prod-
uct Lines with UML: From Use Cases
to Pattern-Based Software Architec-
tures. Addison-Wesley, 2004.

[12] G. Halmans and K. Pohl. “Communi-
cating the variability of a software-
product family to customers.” Soft-
ware and Systems Modeling, 2(1),
2003.

[13] M. Heiskala, J. Tiihonen, A. Ander-
son, and T. Soininen. “Four-worlds
model for configurable services.”
Joint Conference IMCM’06 &
PETO’06, 2006.

[14] P. Heymans, P.-Y. Schobbens, J.-C.
Trigaux, R. Matulevicius, A. Classen,
and Y. Bontemps. “Towards the com-
parative evaluation of feature diagram
languages.” Software and Services
Variability Management - Concepts,
Models and Tools Workshop, 2007.

[15] L. Hotz, K. Wolter, T. Krebs, S. Deel-
stra, M. Sinnema, J. Nijhuis, and J.
MacGregor. Configuration in Indus-
trial Product Families. IOS Press,
2006.

C-8 | CMU/SEI-2008-SR-006

[16] IEEE. IEEE Std. 1471-2000 IEEE
Recommended Practice for Architec-
tural Description of Software-
Intensive Systems-Description, 2000.

[17] K. Kang, S. Cohen, J. Hess, W. No-
vak, and S. Peterson. Feature-
Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report
CMU/SEI-90-TR-021, SEI, 1990.

[18] K. C. Kang, S. Kim, J. Lee, K. Kim,
E. Shin, and M. Huh. Form: “A fea-
ture-oriented reuse method with do-
main-specific reference architec-
tures.” Ann. Soft. Eng., 5(1), 1998.

[19] N. Milanovic and M. Malek. “Current
solutions for web service composi-
tion.” IEEE Internet Computing, 8(6),
2004.

[20] N. Milanovic and M. Malek. “Search
strategies for automatic web service
composition. International.” Journal
of Web Services Research, 3(2),
2006.

[21] B. Orriens, J. Yang, and M. Papa-
zoglou. “A rule driven approach for
developing adaptive service oriented
business collaboration.” IEEE Inter-
national Conference on Services
Computing, 2006.

[22] OWL.
http://www.daml.org/services/owl-s/.
visited June 2007.

[23] M. Papazoglou. “Service-oriented
computing: concepts, characteristics
and directions.” Fourth International
Conference on Web Information Sys-
tems Engineering, 2003.

[24] M. Papazoglou and D. Georgakopou-
los. “Guest editor introduction: Ser-

vice oriented computing.” ACM
SIGSOFT Software Engineering
Notes, 46(10): 24–28, 2003.

[25] M. P. Papazoglou, P. Traverso, S.
Dustdar, F. Leymann, and B. J.
Kramer. “Service-oriented computing:
A research roadmap.” Dagstuhl Semi-
nar Proceedings, 2006.

[26] K. Pohl, G. Böckle, and F. van der
Linden. Software Product Line Engi-
neering: Foundations, Principles, and
Techniques. Springer, 2005.

[27] N. Rozanski and E. Woods. Software
Systems Architecture: Working With
Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley, 2005.

[28] M. Sinnema, S. Deelstra, J. Nijhuis,
and J. Bosch. Covamof: “A frame-
work for modeling variability in soft-
ware product families.” Software
Product Line Conference, 2004.

[29] S. Staab, W. van der Aalst, V. R. Ben-
jamins, A. Sheth, J. A. Miller, C. Bus-
sler, A. Maedche, D. Fensel, and D.
Gannon. “Web services: Been there,
done that?” IEEE Intelligent Systems,
18(1): 72, 2003.

[30] M. Svahnberg, J. van Gurp, and J.
Bosch. “A taxonomy of variability re-
alization techniques.” Software —
Practice and Experience, 35, 2000.

[31] The World Wide Web Consortium
(W3C). http://www.w3.org/. visited
May 2007.

[32] S. Thiel and A. Hein. “Systematic
integration of variability into product
line architecture de sign.” Software
Product Line Conference, 2002.

 SOFTWARE ENGINEERING INSTITUTE | C-9

C-10 | CMU/SEI-2008-SR-006

[33] M. Turner, D. Budgen, and P. Brere-
ton. “Turning software into a service.”
IEEE Computer, 36(10), 2003.

[34] A. van der Hoek. “Design-time prod-
uct line architectures for any-time
variability.” Science of Computer
Programming, 53(3), 2004.

[35] R. van Ommering. “Building product
populations with software compo-
nents.” International Conference on
Software Engineering, 2002.

[36] R. van Ommering, F. van der Linden,
J. Kramer, and J. Magee. “The Koala
component model for consumer elec-
tronics software.” Computer, 33(3),
2000.

[37] S. Vinoski. “WS-nonexistent stan-
dards.” IEEE Internet Computing,
8(6), 2004.

[38] S. A. White. “Using BPMN to model
BPEL process.” Whitepaper,
http://www.bpmn.org/, 2005.

[39] WSDL. http://www.w3.org/TR/wsdl.
visited June 2007.

Appendix D: Identifying and Specifying Reusable Services of
Service Centric Systems Through Product Line
Technology

Jaejoon Lee, Dirk Muthig,
and Matthias Naab

Fraunhofer Institute for Experimental
Software Engineering (IESE),

Kaiserslautern, Germany
{jaejoon.lee, dirk.muthig, mat-
thias.naab}@iese.fraunhofer.de

Minseong Kim, Sooyong Park
Sogang University,
Seoul, R.O.Korea

{minskim, sypark}@sogang.ac.kr

ABSTRACT

The concept of service orientation (SO) is
a relevant promising candidate for accommo-
dating rapidly changing user needs and ex-
pectations. Adopting SO in practice for real
software and system development, however,
has uncovered several challenging issues,
such as maintaining consistent system con-
figuration or integrity of dynamically com-
posed services, or identifying reusable ser-
vices at the right level of granularity. In this
paper, we propose an approach that ad-
dresses the latter issue, which we map to the
well-known challenge of defining reusable
software assets. The approach is adapted
from the analysis technique of product line
engineering, which is the most successful ap-
proach for establishing reuse in practice. We
present how reusable services can be identi-
fied and specified based on features: these
features identify variations of a family of
products from a user’s point of view and thus
will be the subjects of reconfigurations of ser-
vice centric systems at runtime.

D.1 INTRODUCTION

The concept of service orientation (SO) is
a relatively new paradigm for software devel-
opment: systems are no longer developed,

integrated, and released in a centrally syn-
chronized way, but services are developed
and deployed independently and separately,
as well as composed as late as at runtime if
and when needed only. That is, service con-
sumers are mostly decoupled from service
providers. This corresponds to the main prop-
erty of SO: a great amount of inherent flexi-
bility. This flexibility leads to perfect scal-
ability characteristics because a network can
be populated by as many services as wanted
but only affect the systems that actually re-
quire them.

User needs and expectations change con-
tinuously, and thus software systems must
evolve rapidly, to accommodate user expecta-
tions. More and more software systems are
connected to the Internet, and thus their evo-
lution could be supported and accelerated by
dynamically adding and integrating services.
Hence, the SO paradigm is a relevant promis-
ing candidate for addressing evolution chal-
lenges. Thus SO has gained great attention by
practitioners, as well as by researchers.

Adopting SO in practice for real software
and system development, however, has un-
covered several challenging issues, such as
maintaining consistent system configuration
or integrity of dynamically composed ser-

SOFTWARE ENGINEERING INSTITUTE | D-1

vices, or identifying services at the right level
of granularity. In this position paper, we pro-
pose an approach that addresses the latter is-
sue by mapping it to the well-known chal-
lenge of defining reusable software assets. In
SO, a service is the basic building block for
system construction. Thus integrating existing
services, which were developed in potentially
different contexts by different people, means
nothing else than reusing software.

The reuse process consists of several steps:
identification of reuse candidates, evaluation
of these candidates, selection of the best reuse
candidate for the given context, and adapta-
tion and integration of the selected candidate
into the system under development. There are
many experience reports that emphasize prob-
lems and challenges in implementing software
reuse in general. Reusing a service corre-
sponds to the reuse of a component providing
a single method only. From our point of view,
realizing the reuse of services is nevertheless
more challenging than realizing the reuse of
components. That is because the SO reuse
process is supposed to be executed automati-
cally by a software system at runtime without
any consultation of human experts.

In our research, we investigate this reuse
aspect as an inherent part of the SO para-
digm’s nature. We apply the concepts of
product line engineering—which is the most
successful approach for establishing reuse in
practice—to the SO paradigm. That is, we
tailor Fraunhofer PuLSE™ (Product Line
Software and System Engineering)6 [1] to the
SO paradigm and thus enable the efficient
construction and evolution of service centric
software systems.

TM PuLSE is a registered trademark of the Fraunhofer

Institute for Experimental Software Engineering
(IESE) in Kaiserslautern, Germany.

D.2 APPROACH OVERVIEW
In this position paper, we propose a tech-

nique for identifying and specifying reusable
services. This technique is based on analyzing
and specifying features that may vary from a
user’s point of view and thus will be subjects
of reconfigurations at runtime.

Figure D-1 shows activities and their rela-
tionships to the technical components. These
activities are executed iteratively; the arrows in
Figure D-1 indicate the flow of data and which
work products are used by each activity.

A feature analysis organizes product family
features into an initial model, which is then
refined by adding design features such as oper-
ating environments, domain technologies, or
implementation techniques. Within the feature
model, the subsequent binding analysis identi-
fies binding units and determines their relative
binding times among each of the others [2].

The service analysis consumes the results of
these analyses. Each binding unit is further
analyzed to determine its service category (i.e.,
orchestrating service or molecular service)
with respect to the particular family at hand.
We assume here families whose variations can
be described best by variations in workflows
executed by the system users. Additionally, the
context and the technical infrastructures avail-
able vary, and thus dynamic reconfigurations
of product variants are expected.

The mass of low level services, that we call
atomic services, are grouped into richer ser-
vices as required by the family. These richer
services are (virtually) composed of atomic
services and are thus called molecular services.
Note that each product family has thus its own
specific set of molecules, the basic building
blocks for constructing family members. Due
to the definition of those molecules based on
product line processes, molecular services are
more reusable than atomic services (in the
context of a particular product family).

D-2 | CMU/SEI-2008-SR-006

Feature and
feature
binding
analyses

Service
analysis

Orchestrating
service

specifications /
development

- Locality of tasks

Name Activity

Legend

Data flow

Name Activity

Legend

Data flow

- Feature model
- Feature binding units
- Feature binding time

Molecular
service

specifications /
development

- Orchestrating
services

- Molecular
services

Reusable
service

repository

- Reusable
service

components

System
integration

and
deployment

- Workflow
control

components

- Retrieved
services

- A target
system

Figure D-1: Activities of the Approach

From a technical viewpoint, the identified
services are specified first as workflows and
their constituting tasks. Then, their pre/post
conditions, invariants, and service interfaces
are specified. Note that also the quality of
services (QoS) may vary due to different ser-
vice configurations. Finally, the system inte-
gration and deployment activity form a prod-
uct by integrating the reusable services
provided by the previous activities.

For illustrating the approach presented in
this paper, we selected a case study in the
domain of the virtual office of the future
(VOF). The VOF product family consists of
systems, which control and manage collec-
tions of devices to provide any-time any-
where office environments [9].

D.3 FEATURE ANALYSIS
In this section, activities of feature analy-

sis—which includes feature modeling and
feature binding analysis—are introduced. Fea-
ture modeling is the activity of identifying
externally visible characteristics of products
in a product line and organizing them into a
model called feature model [10]. Figure D-2
shows, for instance, a part of the feature
model for the VOF product line. The primary
goal of feature modeling is to identify com-
monalities and differences of products in a
product line and represent them in an exploit-
able form, i.e., a feature model.

Common features among different prod-
ucts in a product line are modeled as manda-
tory features (e.g., Resource Manager and
Follow Me), while different features among
them may be optional (e.g., Auto Log-on) or
alternative (e.g., User Positioning Method).
Optional features represent selectable features
for products of a given product line, and al-
ternative features indicate that no more than
one feature can be selected for a product. De-
tails of feature analysis and guidelines can be
found in [10].

Once we have a feature model, it is further
analyzed through feature binding analysis [2].
Feature binding analysis consists of two ac-
tivities: feature binding unit identification and
feature binding time determination. Feature
binding unit identification starts with identifi-
cation of service features. A service feature
represents a major functionality of a system
and may be added or removed as a service
unit. In VOF, Follow Me, Resource Manage-
ment, Virtual Printer, and Smart Business
Trip features are examples of service features.

A set of features that should be included in a
feature binding unit are identified by travers-
ing the feature model along feature relation-
ships. For example, Follow Me, User Authen-
tication, Manual Log-on, Auto Log-on, User
Positioning Method, Access Point based
Method, and RFID based Method belong to
the FOLLOW ME feature binding unit. Note

SOFTWARE ENGINEERING INSTITUTE | D-3

that the optional AUTO LOG-ON and the al-
ternative USER POSITIONING METHOD are
identified as separate feature binding units,
because they may have different binding time
from their parent feature binding units. (See
Figure D-2 for their identification.) Note that
alternative variants of an alternative feature
binding unit are listed in parentheses (e.g., AP
or RFID for USER POSITIONING METHOD
in Figure D-2.)

Because a feature binding unit contains a
set of features that need to be bound together
into a product to provide a service correctly
and share the same binding time, a product
can be considered as a composition of feature

binding units. By taking these feature binding
units as a key driver for service analysis, we
could alleviate the difficulties for identifying
candidate services with right granularity, i.e.,
reusable services.

Follow-Me

User
Authentification

Device
Allocation
Strategy

Manual
Log-onAuto

Log-on

Distance-
based

Device
Attribute-

based

Smart
Fax

Virtual
Printer

On-line
Fax Send

Recipient
Recognition

Recipient
Notification

Email

SMS

Virtual Office of the Future (VOF)

…

User
Positioning

Method

Resource
Manager

RFID-based
Method

Access Point
based Method

Require

VIRTUAL
PRINTER

AUTO
LOG-ON

USER
POSITIONING

METHOD
(AP ∨ RFID)

RESOURCE
MANAGER

ATTRIBUTE-BASED
ALLOCATION

SMS

FAX
NOTIFICATION

SMART FAX

Recipient Notification requires
Recipient Recognition.

Optional Alternative

Composed-of relationship
Generalization relationship
Implemented-by relationship

Legend

Composition Rules

……

Binding unit

Feature Biding
Unit Name

NAME

FOLLOW ME

…

Smart
Business Trip

SMART
BUSINESS TRIP

…

Figure D-2: A Feature Model and Binding Units of VOF [11]

In the next section, how the identified can-
didate services (i.e., feature binding units) are
further classified and refined is explained.

D.4 SERVICE ANALYSIS
Through the previous activities, we now

have a feature model and feature binding in-
formation, which provides an insight into a
targeting domain in terms of product features,
basic units of binding, and their binding time.

D-4 | CMU/SEI-2008-SR-006

Then, the feature model is refined and restruc-
tured by introducing a separation of two
distinctive service characteristics: behavioral
(workflow) and computational (tasks) service
characteristics.

A behavior oriented service is mainly to
define a certain sequence of tasks, i.e., work-
flows. We call services in this category or-
chestrating services, as their main role is the
composition of other services in a harmonious
way. A computation oriented service is to
provide computational outputs (i.e., a prede-
fined task) in response to given inputs. We
call services in this category molecular ser-
vices, as they are the basic building blocks
and will be reused as-is by orchestrating ser-
vices. Details of services that belong to each
category are explained in the following sec-
tions. (See Figure D-3 for the refined feature
model with the two service layers.)

D.4.1 Orchestrating Service
For orchestrating services, correctness of

their overall control behavior is the foremost
concern. For example, providing an expensive
color-printing service with proper authoriza-
tion and billing processes is critical for virtual
office service providers. Therefore, adopting a
formal method framework to specify, vali-
date, and verify is the most suitable way for
developing orchestrating services. In our ap-
proach, we adapted a workflow specification

language [11] with pre/post conditions and
invariants to enhance the reliability of specifi-
cations.

Figure D-4 shows a workflow specification
example for a business trip service. Each or-
chestrating service has pre/post conditions
and invariants. In this example, a user should
be logged in to trigger the service, and the
workflow is completed only after the user
submits a postmortem report about her/his
business trip. Also, the invariants (i.e., the
user is employed and the business trip is not
cancelled) should hold through the whole
workflow process. When ever the invariants
become invalid, the workflow is terminated
with proper notifications to relevant stake-
holders.

Moreover, each task of the workflow can
be specified with its pre/post conditions and
invariants. For example, a secretary should
achieve the access rights to organizational
data such as the charged project’s budget in-
formation and the traveler’s bank account
number to proceed with the reservation task.
Such conditions can be defined as the precon-
dition of the reservation task and checked
when a secretary is assigned for the task. Note
that the consistency of invariants between a
workflow and its constituting tasks should be
checked when an orchestrating service is
specified.

SOFTWARE ENGINEERING INSTITUTE | D-5

…

Environment
Visualization User

 Authentication
Device

Allocation
Strategy

Manual
Log-on

Automatic
Log -on

Distance-
based

Device
Attribute -

based

Smart Fax
Virtual
Printer

VOF

…

User
Localizer

Resource
Manager

RFID-based
localization

AP-based
localization

Business
Trip

Planner

…

Maintain
Connectivity

Molecular Service Layer

Orchestrating Service Layer

FOLLOW ME RESOURCE
MANAGER

Optional Alternative

Composed - of relationship

Generalization relationship

Legend

Molecular Service

Molecular Service NameNAME
Features for QoS

…

Follow-Me

Figure D-3: A Refined Feature Model Based on Two Service Categories

In addition to the identification of tasks
and their pre/post conditions and invariants
for an orchestrating service, the locality of
each task should also be identified for high
availability of services. By locality we mean
that the information of the responsible person
of a task and her/his physical location where
the task is performed. The locality informa-
tion is particularly important for a domain. In
addition to the identification of tasks and their
pre/post conditions and invariants for an or-
chestrating service, the locality of that should
support mobility of users like the VOF sys-

tems. For instance, the visa process and reser-
vation tasks are local to a secretary, and they
can be processed without the coordination at
the global level. This means that the secretary
can perform the tasks locally although she/he
is disconnected from a network. Also, the
physical location is important to assign the
most relevant business peripherals such as a
printer or a fax machine. However, the ap-
proval status of a business trip by a deciding
staff should be managed at the global level to
trigger tasks that belong to other persons.

D-6| CMU/SEI-2008-SR-015

Figure D-4: An Example of Workflow Specification for an Orchestrating Service: Smart Business Trip

<<Start State>>
Start

<<Task>>
Collect

t rip data

<<Decision>>
All data

collected?

No

No

<<Decision>>
Visa required?

<<Task>>
Reservat ions

(as: assist ing staff)

<<Task>>
Visa process

(c: country name)

Yes

<<Task>>
Approval

(ds: deciding staff)

<<Decision>>
Approved?

Yes

Yes

<<Task>>
Postmortem report
(c: country name)

<<End State>>
End

No

<<Task>>
Local task support

<<Fork>>

<<Join>>

Travel Requester Deciding Staff

Secretary

Travel Requester

workflow BUSINESS TRIP Planner
(trip:Trip, t:Traveler, c:Country Name)
Invariants t.IESE_Employee == True &&

trip.validity ¡ ÁCanceled
preconditions t.authetification == Logged_in
postconditions trip. postmortemReport == Submitted

Travel
Requester

Legend

Local work flow
Global work flow

Name

Locality of a task

Legend

Local work flow
Global work flow

Name

Locality of a task

Next, the identification and specification of
molecular services are explained.

D.4.2 Molecular Services
The identification of molecular services

with right granularity is the key factor to en-
hance reusability of the service centric system
development. Molecular services are the basic
units for reuse, and orchestrating services
should be able to compose them as-is through
their interfaces during development time or
their runtime. For their identification, feature
binding units are analyzed and refined with
consideration of the following guidelines. A
molecular service should be

• self-contained (local control and local
computation)

• stateless from service user’s point of view
• provided with pre/post conditions
• representative of a domain-specific ser-

vice
The first three guidelines are to decouple

service consumers from providers. Based on
these guidelines, a service consumer only

needs to know the service providers’ interface
and their conditions for use. This means that
any changes (performance improvements bug
patches, etc.) within an identified molecular
service must not be propagated to other ser-
vices.

The last guideline is the key factor to de-
termine the right granularity of a molecular
service based on the feature binding unit and
time information, and domain experts’ profes-
sional judgment. For instance, the feature
binding units related to Follow Me and its
descendent feature binding units in figure D-2
are identified and reorganized as the
FOLLOW ME molecular service in Figure D-
3. The rationale for this determination is as
follows:

• the Follow Me feature is a mandatory
service for every user of the VOF prod-
uct line

• each localizing device (e.g., RFID, access
points of wireless networks, etc.) uses
different localization techniques, but its
expected outputs are the same (e.g., a
user’s physical location)

SOFTWARE ENGINEERING INSTITUTE | D-7

1: molecular service FOLLOW ME (user User)

2: invariants user.IESE_Employee == true

3: precondition user.authentification == logged_in

4: postcondition none;

5: option Environment Visualization

6: binding time run time

7: precondition user.device == desktop ∨ notebook

8: postcondition none;

9: option Automatic Log-on

10: binding time run time

11: precondition user.rank == director ∨ manager and

12: RFID bases user location method == available

13: postcondition user.access == granted ∨ rejected;

• the implementing algorithms for localiza-
tion evolve rapidly to improve their ac-
curacy

• it is a computation oriented service with-
out any workflows in it

Based on this decision, the FOLLOW ME
molecular service is designed and imple-
mented to provide the user localization ser-
vice to the orchestrating services, if they
abide by the pre/post conditions of FOLLOW
ME.

Each molecular service may have its QoS
parameters, which are identified during the
feature binding analysis in terms of optional
or alternative features. For example, the User
Positioning Method feature binding unit has
two alternatives (e.g., AP-based and RFID-
based method), and their levels of accuracy
are different (e.g., the error range of the
RFID-based method is less than 1 meter,
whereas the error range of the AP-based
method is less than 10 meters). Depending on
available devices near a user, one of the alter-
native positioning methods is selected and
used.

In our approach, each molecular service is
specified by using a text-based specification
template, and Figure D-5 shows the specifica-
tion of FOLLOW ME. (The characters in the

bold font are reserved words for the specifica-
tion.) The FOLLOW ME service is for the
current employees, who passed the authenti-
cation and logged in. Also, the Automatic
Log-on, which is optional for higher quality
of the service, is only available at runtime
when the requesting user’s job function is
director or manager, and an RFID device is
available nearby. (See the lines 9 to 13 for the
specification of optional feature Automatic
Log-on.)

In this section, concepts and guidelines for
analyzing and specifying orchestrating and
molecular services are explained. The next
section discusses and evaluates our approach.

D.5 RELATED WORK

While our approach concentrates on
achieving reusability by means of proper
identification and specification of services
using product line technologies, in [3], reus-
ability is claimed to be achieved by the struc-
ture of systems and the interaction mecha-
nisms. This mainly means the availability of a
service repository and the concepts for dis-
covering, negotiating, and binding services.

IBM developed a method, called “Service-
Oriented Modeling and Architecture” [4, 5]. It
provides guidelines for three steps towards

Figure D-5: An Example of Molecular Service Specification

D-8| CMU/SEI-2008-SR-015

SOFTWARE ENGINEERING INSTITUTE | D-9

SO systems: identification, specification, and
realization of services, flows, and compo-
nents. In particular, a combination of three
complementary ideas is proposed to identify
services in [4]. First, the domain of the re-
spective software systems is analyzed and
decomposed. Second, existing legacy systems
are explored in order to discover parts to be
reused as services. Third, business goals are
taken into account to complete the identifica-
tion of services. The first and the third ideas
are reflected in our approach. Also, our ap-
proach supports the service identification by
the proven method of feature-oriented analy-
sis and design and thus puts additional struc-
ture on the method.

The approach of IBM further suggests or-
ganizing services in a hierarchy of services of
different granularity. By comparison, our ap-
proach adds the dedicated layer of molecular
services that form reusable assets in the spe-
cific domain. According to the respective do-
main, the molecules would be composed in
different ways to optimally fit the requirement
of reuse. Thus, reuse becomes easier by only
selecting from a rather small number of assets
with well-tailored granularity. Additionally,
the concept of flows of services is mentioned
to be important in [4]; however, there are no
details about the identification or specification
of these flows. On the other hand, our ap-
proach incorporates the defined molecular
services as the building blocks with which to
orchestrate workflows.

Another approach of using feature-oriented
analysis to identify services for an SO system
is described in [6]. Their main focus is on
reengineering towards SO systems. They
claim to do a feature analysis of the particular
system and use the result as input for the ser-
vice identification. Yet, they do not provide

concrete guidelines on how to come up with
services of the right granularity.

While methods for the identification of or-
chestrations of services are hard to find, there
are a number of languages to express such
orchestrations. For instance, in the field of
Web Services, BPEL4WS (Business Process
Execution Language for Web Services) [7] is
widely used to realize SO systems. It repre-
sents a language to specify orchestrations of
services that are then accessible as higher-
level services. While BPEL is well-suited for
the pure orchestration of services, it has some
deficiencies in the area of business processes
that comprise human interaction during the
business process. We addressed this by com-
bining ideas from workflow-management,
which is explicitly designed for human inter-
action, and service orientation. Thus, in our
approach, orchestrated services are described
as workflows.

A further concept we transferred to service
composition is “Design by Contract” [8]. We
enriched the composition language and ser-
vice description by pre/post conditions and
invariants that can be automatically verified.
Hence, the reliability of service-composition,
static as well as dynamic, can be improved by
checking the correct usage of services. The
reusability of services is also improved with
advanced description, since automatic checks
can reduce the number of feasible candidate
services, which makes selection easier.

D.6 CONCLUSION

We have transferred product line technol-
ogy into industry since 1998, and we’ve ex-
perienced in nearly all cases a quick increase
of the number features, as well as required
variants. Hence, the management of features
and their variations becomes soon one of the

major challenges in maintaining and evolving
viable reuse infrastructures. The environment
and context of service-oriented systems is
typically very dynamic and always distrib-
uted. Our experience with such service-
oriented product lines has shown that the
challenge of managing variations and keeping
services reusable and useful over a long pe-
riod of time is even bigger than for other sys-
tems.

In this position paper, we propose an ap-
proach that alleviates this difficulty through
the grouping of features into feature binding
units of the same binding time, as well as by
interpreting these units as key drivers for
identifying reusable services, that is, molecu-
lar services.

The practical applications of our approach
in our lab infrastructure demonstrated that
product line technology can significantly help
in mastering this challenge. The key property
of the approach is its support for identifying
reusable services at the right level of granular-
ity abstraction.

Nevertheless, our approach is still in an
early phase, where its fundamental properties
are worked out in detail, as well as validated
in small case studies in our prototyping envi-
ronments. Currently, we have established a
demonstration facility within our institute to
execute real scenarios of a virtual office of the
future. The infrastructure of this demonstra-
tion facility has been defined by following our
approach, which has already provided useful
conceptual insights and lessons learned from
a practitioner’s perspective.

Additionally, we are working on complet-
ing the approach to fully cover the overall
product line life cycle including the evolution
of product line infrastructures. As part of
these activities, an architectural prototype
emulating an SO environment was built and
has been used to refine the architectural styles

and patterns required to prepare the SO para-
digm for practical contexts.

ACKNOWLEDGEMENTS

This research is partially carried out in the
Cluster of Excellence “Dependable Adaptive
Systems and Mathematical Modeling” pro-
ject, which is funded by the Program “Wissen
schafft Zukunft” of the Ministry of Science,
Education, Research and Culture of Rhine-
land-Palatinate, Germany, AZ.: 15212-52
309-2/40 (30).

REFERENCES

[1] J. Bayer et al., PuLSE: A Methodology
to Develop Software Product Lines.
Proceedings of the Fifth Symposium on
Software Reusability. SSR’99, ACM
Press (1999).

[2] J. Lee and K. Kang. Feature Binding
Analysis for Product Line Component
Development. In: van der Linden, F.
(eds.): Software Product Family Engi-
neering. Lecture Notes in Computer
Science, Vol. 3014. Springer-Verlag,
Berlin Heidelberg (2004) 266-276.

[3] H. Zhu, “Building reusable components
with service-oriented architectures,”
presented at IEEE International Confer-
ence on Information Reuse and Integra-
tion, (2005).

[4] A. Arsanjani, “Service-oriented model-
ing and architecture - How to identify,
specify, and realize services for your
SOA,” (2004).

[5] A. Arsanjani and A. Allam, “Service-
Oriented Modeling and Architecture for
Realization of an SOA,” in Proceedings
of the IEEE International Conference
on Services Computing: IEEE Com-
puter Society, (2006) 521.

D-10 | CMU/SEI-2008-SR-006

[6] F. Chen, S. Li, and W. C.-C. Chu, “Fea-
ture Analysis for Service-Oriented Re-
engineering,” in Proceedings of the 12th
Asia-Pacific Software Engineering
Conference (APSEC’05) - Volume 00:
IEEE Computer Society, (2005) 201-
208.

[7] Andrews, Curbera, Dholakia, Goldand,
Klein, Leymann, Liu, Roller, Smith,
Thatte, Trickovic, and Weerawarana,
“Business Process Execution Language
for Web Services,” (2003).

[8] B. Meyer, “Design by Contract,” in
Advances in Object-Oriented Software
Engineering, D. Mandroli and B.
Meyer, Eds.: Prentice Hall, (1991) 1-50.

[9] Competence Center for “Virtual Office
of the Future,” http://www.ricoh.rlp-
labs.de/index.html.

[10] K. Lee et al., Concepts and Guidelines
of Feature Modeling for Product Line
Software Engineering. In: Gacek, C.
(eds.): Software Reuse: Methods, Tech-
niques, and Tools. Lecture Notes in
Computer Science, Vol. 2319. Springer-
Verlag, Berlin Heidelberg (2002) 62-77.

[11] J. Lee and D. Muthig. Feature-Oriented
Analysis and Specification of Dynamic
Product Reconfiguration in: H. Mei
(eds.): ICSR 2008. Lecture Notes in
Computer Science, Vol. 5030. Springer-
Verlag, Berlin Heidelberg (2008) 154-
165.

[12] JBoss jBPM 2.0 jPdl Reference Man-
ual, http://www.jboss.com/products/
jbpm/docs/jpdl.

C SOFTWARE ENGINEERING INSTITUTE | D-11

D-12 | CMU/SEI-2008-SR-006

SOFTWARE ENGINEERING INSTITUTE | E-1

Appendix E: Product Lines that Supply Other Product Lines:
A Service-Oriented Approach

Sa lva dor Tr ujillo Christian Kästne r Sve n Ape l
I K ERLAN Re sear ch Ce ntre Unive rsity of Magde bur g U nive rsity of Pa ssa u

Mondr agon, Spain Ma gdeburg, Ger many Pa ssau, Ger many
strujillo@ ike rla n.e s ckae stne@uni- magdebur g.de ape l@uni-pa ssa u.de

Abstract

A software product line is a paradigm to develop a family
of sof tware products wi th t he goal of reus e. In this paper ,we
f ocus on a s cenario in which di f f erent pr oducts f rom dif f er-
ent pr oduct lines are combined t ogether i n a thir d product
line to yield more elaborate products , i .e., a product line
consum es pr oducts f r om thir d product line s uppliers . T he
issue i s not how di f f erent products can be pr oduced sepa-
rately, but how t hey can be combined together. We pr opos e
a s er vice-oriented architectur e wher e pr oduct lines are r e-
gar ded as s er vices, yiel ding a s er vice-or iented pr oduct l i ne.
This paper i llustrates the approach wit h an example f or a
ser vi ce-oriented architectur e of W eb Port als and Por t l ets.

E.1 Introduction

The goal of a software product line is to produce a set of
di s tinct but simi l ar products. Typi cal ly, t his is achieved by
reusi ng a common product line infras tructure, which con-
sists not only of t radi t i onal reus able s oft w are (e.g., code,
models , documentati on, etc), but contains product line s pe-
cific as s et s as well (e.g., feature model, product ion pl an,
product line architecture, etc).

Currently, s oftware product lines are primarily t argeted
at producing software products that are us ed in isolation.
They can depend on third-party software (e.g., operating
system, embedded system, or web container), but this thi rd-
party s oft ware i s usual l y regarded as fixed becaus e it i s con-
sidered t o be part of t he execut ion environment . So, t hey
do not depend on other s oft w are developed by thi rd-part y
product lines.

Service-Orient ed Ar chitectur es (S OAs) may change this
scenario. Typically, an SOA applicat i on compri s es a s et
of thi rd-party s ervices, w hich may be di s tributed. Each
of such services supplies some s pecific funct i onality, and
all together complete the di s tributed application function-
ality (i.e., the web s ervices with fine-grained functionality

are combi ned together to s erve an application wi th coars e-
grained functionalit y). SOA promot es s ervices to be eas-
ily cons umed by divers e appl i cat ions becaus e the dis covery
and cons umption of s ervices are s t andardi zed. The useful -
nes s of SOA res ts on existing s tandardizat i on efforts and
tooling [16].

Reus ing servi ces can even be ameliorated by creating a
product l ine that satis fies di vers e variabili t y requirement s
from di fferent cus tomer appl i cat ions (e.g., a product l ine
of customi zed portlets for customer portals where existing
techniques are us ed [10, 18]). This way, not only the ap-
plicat i on i nterface is customi zed by us ing standards to con-
sume s uppl i ed services, but als o the application function-
al i t y is cus tomized by us ing product lines of s uppl i ed s er-
vices.

However, t he ent i re SO A applicat i on i t s elf could require
its cus tomization (e.g., not only the port l et is cus tomized
from a product l i ne, but the portal as w ell). When the SOA
applicati on itsel f turns into a product line, a new s cenario
emerges. This s cenario requires that a product line con-
sumes products that are s uppl i ed from third-party product
lines. We cal l s uch a scenario a Service-Oriented Product
Line (SOPL).

This situation is w el l known in real industrial assembly
lines. Consider a carmaker with an as sembly line (e.g., from
the chass i s to t he end-product) where thi rd-part y s uppl i ed
components provided by ot her product l ines are ass embled
together. Thes e non-trivi al component s are the engi ne, the
gear, the front -end, et c, w hi ch are al s o cus t omized products
of other product lines. In t his case, t here is a product line of
cars that is suppl ied by other product li nes of components .

Al though this cont ext seems fut uris t i c for traditional
software at first, it occurs for example w hen developing
software for cons umer electroni cs (e.g, s everal compo-
nents like TV receiver wi t h different options are bui l t into
a TV product li ne) [19]. H ere, pr oduct populat i ons offer
an architect ure-cent ri c approach t o combi ne mul t i ple prod-
uct lines where human intervention is requi red [19]. Our
work s t ri ves to homogeni ze t he combi nat i on of products
from product lines using S OA. This reduces human inter-

E-2 | CMU/SEI-2008-SR-08

vent i on during product line di s covery and minimizes human
int erventi on from consumption. This way, the challenge is
how to enable the aut omatic consumptions of products from
a third-party product line, w hi ch w e addres s in this paper.

E.2 Service-Oriented Product Lines

There is nothing new about how multiple, distribute and
heterogenous product lines are devel oped in i s ol ation, i.e.,
existing techniques can be us ed t o create an individual
SOPL. It i s even possible for a product line to manually
supply a product to a product l ine (e.g., w hen 2 products
from product li nes are manually combined together). We
envi s age SOP L tow ards the automation of mul t iple product
lines combination.

The issue of how that product is coupled into the whole
end-product is faced by pr oduct populations , which de-
scribe an architecture-centric approach to attai n this cou-
pl i ng [19] (see Section E-5). This approach requires
uman intervention.

We envis age for SO PL to compos e product s supplied
from different product l ines w ith l i ttle human i ntervention.
To this end, several i s sues s hould be addres s ed. We have
to (i) des cribe a s uppl i er product l i ne, (ii) sket ch how t o
consume products supplied by other product lines , (iii) es-
tablish t he operation of S OPL w here performance, produc-
tion s chedule, bi ll of materials and other elements s hould
be considered beforehand, and (iv) adequate exi s t i ng tool
support.

E.2.1 Supplier

First we need to analyze which informat i on a s upplier
product line s hould publish in order to enable its automatic
consumption aft erwards . A s uppli er is characteri zed by (i)
descript ive informat i on, (ii) product informat i on, and (iii) a
production int erface.

- D es criptive information refers to the id, name, and a
brief descri ption of the product line. Thi s i nformation
i s later used during the discovery and regi s tration of
t he product line.

- P roduct informat i on describes how product s are dis-
t i nguis hed in a product l ine s etting. A product is fre-
quently characteri zed by its features . This is t he bas ic
speci fication we need to buil d a product. Further i n-
format ion about core as set s may be offered as well for
des cri ptive purpos es .

- P roduction int erface cons i s ts first of information s uch
as production time, del i very time, average product
cos t, average product LOC, average product s ize, and
s o on. An importantpiece of i nformation is t hat related

to the i nterface for consumption (e.g., which URL
should be invoked in the cas e of a web servi ce and
which parameters us ed). This informat i on woul d be
us eful w hen choosing among concurrent product lines .

Start ing from this information provided by a s uppl i er, a con-
sumer mi ght cons ume such a supplier product line.

E.2.2 Consumer

A cons umer product l i ne demands product s from thi rd-
party product lines . This demand is s peci fied i n terms of
supplier´s charact eristics (e.g., descriptive information). .
The purpose of a consumer product l ine is to effectively en-
able the access t o a s upplier. Each cons umer product l i ne
is real ized by a cons umer stub, which links w ith i ts corre-
sponding product line supplier. In SOA terms , a supplier is
supplying services , and t he consumer aggregates s ervices to
offer an application.

Nonetheless, our aim is not onl y t o cons ume a s i ngle sup-
plier, but to cons ume mul t iple s uppl i er product lines. This
can be achieved by combini ng a s et of consumer product
lines together. S o, a set of cons umer s t ubs can be us ed to-
gether. When t hey are used to create another product-li ne,
this idea can be regarded as an SOPL.

This combination of cons umers expos es an entire S OP L
architect ure representing all the product l i ne s uppliers in-
volved. We envis age S OP L for automat i ng t he operation of
the entire product line.

E.2.3 Operation

We define a sequence of operations between the con-
sumer and their s uppl i ers in order to enable their commu-
nicat i on. Thi s is roughly divided int o registration and con-
sumption (s ee F igure E-1).

Registration The regis tration requires the discovery of
each product li ne supplier (i.e., human intervention is re-
quired)1. Figure E-1 s hows how a consumer can register to
an individual s uppl i er product li ne w here PL_A registers to
PL_1. The s equence of operat i ons involves first a getSer -
viceDescription() call. Then, a r egister () operation estab-
lishes a relations hi p for future consumptions i n which t he
supplier provides average production t i me, delivery ti me,
et c. The general cas e would encompas s regi s trations w ith
several s uppl iers.

Consumption The cons umption refers t o the product ion
and delivery of t he product. In general, when the product
line production or derivation proces s is aut omated, we can

1Ex isting U DDI stan dar d (for web-ser v ices) can be used in this contex t
(http://www.u dd i.org /).

SOFTWARE ENGINEERING INSTITUTE | E-3

Figure E-1: O per a tion - Sequence D iagr am

invoke s uch product line s peci fying des i red feat ures and get
a product [2, 6].
Figure E-1 shows the sequence of operations where a sup-
pl yPr oduc t () cal ls for the production and delivery of a s pe-
cific Pr oduct (e.g., A1 from PL_1 in Figure E-3). The supplied
product is cons idered as a reusable asset by t he product line
consumer. N onetheles s , t ool s upport is needed t o automate
such cons umption.

E.2.4 Tool Support

The ideas pres ented before on cons umer/s uppl i er rela-
tionship benefit from SOA ideas. More to the point, existing
SOA s tandardizati on efforts and tool support may readily
enable to create s uch infras tructure.

In general, w e envisage two ki nds of consumptions .
First, when the product l i nes are in t he same workspace
(same vendors), this is named internal cons umption. S ec-
ond, w hen the product lines are in distinct workspaces (dis-
tinct vendors), thi s is named exter nal consumption. S o far,
we created ini t i al tool support for the internal consumption
(not detai l ed), and are planning to w ork on external.

E.3 Example

Portals an d Portlets We choos e por t als of por tlets to i l-
lus trate t he idea of S OP L [10]. A portal is a Web page that

Figure E-2: Por t al / Por tlet A r ch i tectur e

Figure E-3: SO PL Scenar io

provides central ized access to a variety of services [8]. A n
increas i ng number of t hese s ervices are not offered by the
port al i t s elf, but by a thi rd-part y component called a portlet,
which is a pres entat ion oriented web s ervice [12, 15].

Figure E-2 depicts a 3-tier architecture for portlets, where
M y Br ow s er acces s es the P or t al _1 page through HTTP . P or -
tal_1 is hos ted by Consumer1 and consis t s of a layout ag-
gregat ing the Alpha, Beta, and Delta portlets that are host ed
by different producers (a.k.a. s uppl i ers).

When a family of simi l ar portals (e.g., research group
si tes) is requi red, a cus t omized portal can be the out come
of a product li ne that consumes portlets t hat are s uppl ied by
third-party product l i nes . Figure E-2 s hows t his w here P or -
tal_2 consists of a vers ion of Alpha di fferent of that used
by P or t al _1 (same holds for Beta), and other portlet s (e.g.,
Lamnda, Theta). This set t ing i s commonplace in S OA.

Scenario As a specific example, consider an S O PL on a
product-line of enterpri s e Web port als where different s er-

E-4 | CMU/SEI-2008-SR-06

vi ces are offered. Each company demands a simi l ar, but
di fferent vers ion. So, there i s a family of products. The
servi ces i n this portal are offered by portl ets (e.g. meeting
room res ervat i on, calendar, hotel res ervation, flight reser-
vation, etc), w hi ch as well vary and hence come from a
product-line.

Figure E-3 sketches our motivating scenario for a set of
product lines of portlet s , w hich supply t o a product l ine of
portals. PL_A is the product line of ent erprise portals . This
product li ne uses several portlet s (from A1 to A6). Note that
some of them (A1 and A4) are directly supplied by third-
party product l ines . A1 is a meeting-room reservation port-
let s uppl i ed from PL_1 product line while A4 comes from
PL_2 product line, whi ch offers fli ght res ervation function-
ality. A1 and A4 are act ual l y portlet s t hat are integrated int o
the entire port al2.

A mechanis m is needed for each product line s uppl ier t o
receive the product configuration as input (e.g., sel ect ion of
product features [2, 7]), and manufacture as out put thefi nal
product3.

The chal l enge of S OP L i s to consume products that are
supplied by PL_1 and PL_2 as compos able art i facts i n the
PL_A product li ne (i.e., invoking t hird-party product lines
and obtai ning the product as a reus able ass et for another
product line). We believe t hat exis ting S OA tool s upport
provides an adequate foundati on for S OP L.

E.4 Discussion

Consistency Product s to be reus ed within a cons umer
product line need to fit precisely. Hence, t he cons istency
is cruci al t o as sure that the product fits as artifact of a larger
product. Thi s consi s tency i s sue appears when features from
a consumer require to be propagated to a supplier (e.g., the
features from supplier s hould be cons istent with the product
features where it is to be aggregated4). It is not trivial how
to do s o as different names coul d designate s ame function-
ality and viceversa. S i milarly, when dealing with heteroge-
neous product lines (e.g., products i mplemented i n di fferent
pl atforms) cons i s tency i s sues may appear as well.

Production Production does not only depend on product
line art i fact s , but al s o depends on third-party artifacts. If
these artifacts are not available wi thin s chedul e, t he product
woul d not be produced. H ence, production s chedule and

2Th is d o es no t p r eclu de that the p ortlet is ph y sically dep lo y ed o n the
same mach in e than the p ortal, bu t can be dep loyed externally, and reu sed
solely by this specific portal.

3S uch man u facturing (e.g ., po r tlet prod uct lin es PL_1 and PL_2) in-
vo lv es to (i) comp o se targ et prod u ct cod e, (ii) co mpile th e r esultin g com-
position, (iii) create a P ortlet b u nd le, and (iv) dep lo y it to a g iv en location .

4Th is refer s to a featu r e model, who se ter min al f eatu res are replaced
with an entir e featu r e mo del [1, 7].

timi ng should be carefull y planned. O therwi s e, un des irable
production bot t lenecks would appear in the performance.

Orch estrati on Consistency and timing iss ues are s ymp-
tomatic of a more general i s sue, which i s orchestrati on (i .e.,
how di fferent product lines are smoothl y orchestrat ed to-
gether). Doing so, cons istency, ti me and product ion i s sues
could be considered. To attain this , experi ence from “real -
world” manufacturi ng seems benefici al for production ex-
periences. Busines s Pr ocess Execution Language (BPEL)
is a cas e in point5.

Servi ce-Ori ented Refactori n g The i dea of SO PL to
yield a product is backed by a non-trivial SO A s cenario.
However, the us e of multiple product l i nes is not restrict ed
to t his case. Cons i der an i ndividual product l i ne, which has
grow n along the time int o a l arge product line. When this
occurs , both technical and organizational management of
the product line becomes int ri cate (e.g., core as s ets man-
agement , production planning, et c). There is an anci ent
principl e to face this: “divide and conquer ” (a.k.a. sepa-
ration of concerns in s oft w are engi neering). Applyi ng s uch
principl e leads us to divide an original product line into a set
of product lines . This refactoring of an original product line
into a set of product lines w ould enable eventuall y to ease
the product line management (as they are s maller). This
refactoring i s also motivated when the newly created prod-
uct line i s t o supply products t o new cus t omers that demand
onl y res tricted functionalit y (i.e., few er than original prod-
uct line functional i t y). Therefore, we envi s age that s everal
si tuations w ould demand servi ce-oriented refact oring.

E.5 Related Work

As i ndus trialization of the automobile manufacturing
proces s led to increased product i vity and higher qual i t y at
low er costs, indus t ri alization of the software development
proces s is leadi ng to the same advantages [11]. A s oftware
factory6 is defined as "a f acility that ass embles (not codes)
sof tware applications to conf orm to a s pecifi cation f oll ow-
ing a s t r ict m ethodology". In general , t o s et-up a factory
is to creat e a product i on capability. An important piece of
work is how such factories connect with t hird-party facto-
ries.

In a product line setti ng, a fact ory uses a production pl an,
which is “a descripti on of how cor e assets are t o be us ed

5BP EL is a business process lang u age th at grew o u t of WSFL an d
XLAN G . It is serialized in XML and aims to en able prog rammin g in the
large. The co n cep ts o f p r o gramming in the large an d pro g ramming in the
small d istin g uish between tw o asp ects of writing the typ e o f lo n g-run ning
asy nch r o nou s p ro cesses that one typ ically sees in bu sin ess p rocesses (from
http://en .w ik ip edia.org/wiki/B PEL).

6http://en .wikiped ia.o rg/wik i/Software_facto ry

SOFTWARE ENGINEERING INSTITUTE | E-5

to devel op a pr oduct in a product line” [4]. A production
pl an des cribes how a product is developed [3, 4, 14]. Lee et
al. descri be an approach for producti on planning bas ed on
features [13]. Recent l y, Wang et al. describe producti on“on
the fly” where dynamic reconfiguration was used to support
pri vacy in web applicati ons [21].

Cons ider a typical product i on plan that impl i es the s elec-
tion of product desired features in order to compos e s uch s e-
lected features [9]. Then, w hen t he raw compound product
is obt ained, it is neces sary to creat e a binary (e.g., an exe-
cutable, a JAR or a WAR). To this end, the raw data is compiled
packaged, and deployed. Optional l y, it may be measured,
tes t ed, versioned or even documentat i on created. In gen-
eral, it describes how the factory operates t he reusable ar-
tifacts [17]. S uch production techni ques reus e not onl y the
art ifacts , but even the process that are present in the product
line infrastructure. However, they do not enabl e to invoke a
thi rd-part y product li ne and reus e the third-party product.

The notion of product populations i s not far from S OP L.
The di fference stems from t he fact that product populations
focus on how a product is int egrated into a product l i ne (i.e.,
the architectural interfaces that gl ue them t ogether) [19, 20].
Thi s work focuses on t he automat ion of this combination
rat her than on how product s are glued t ogether.

Product l i ne products are us uall y produced reusing a
common infrastruct ure. Thi s infras t ructure is us ually i n-
ternal to the product line. Even though there is experience
with COTS components [5], they are not part of a product
line. Hence, to the best of our knowledge, we are unaware
of tool i ng to enable the aut omated cons umption of a product
line supplier.

E.6 Conclusions

Thi s paper present s our ongoing work on t he vis ion
of SO PL, which consume products from s uppl i er product
lines. We motivated our idea w ith an example for a product
line of port als consuming s uppli er product lines of portlets.
We int roduced prelimi nar repres ent ations for cons umer and
supplier product lines, des cri bed the basic operation wit h
registration and cons umpt i on, and s ketch the ini tial tool
support requi red.
SOPLs rel y on S OA for product line production. To an-

swer the w orks hop ques t i on, existing S OA techniques are
us ed to build more compl ex S P L s ystems . Our longs t and-
ing aim i s to facil i t ate the emergence of a concurrent market
where at omic products from supplier product lines can be
automat i cal ly integrated into a product line.

Ac knowl e dgments We thank M aider Azanza, D on Ba-
tory, Rafael Capilla, Oscar Di az and J on Iturrioz for their
helpful comment s on earl i er drafts of this paper.

References

[1] D. Bat ory, D. Benavides, and A. Ruiz-Cortes . A u-
tomated Analysis of Feature Model s : Challenges
Ahead. Comm. of t he ACM - Special Iss ue on Sof t -
war e Product Lines, Dec 2006.

[2] D. Batory, J. N. Sarvela, and A. Raus chmayer. Scal -
ing Step-Wise Refinement. IEEE Tr ansactions on
Sof t war e Engineering, 30(6):355–371, June 2004.

[3] G. Chastek, P . Donohoe, and J.D. M cGregor. Prod-
uct Li ne Production P lanning for t he Home Integra-
tion Sys t em Example. Technical report, CM U /SEI,
S eptember 2002. CMU/S EI-2002-TN-029.

[4] G. Chastek and J .D. McG regor. Guidelines for D e-
vel opi ng a P roduct Line Product i on Pl an. Technical
report, CMU/S EI, June 2002. CMU/S EI-2002-TR-06.

[5] P . Cl ement s and L.M. N ort hrop. Sof twar e Prod-
uct L ines - Practices and Patterns. Addison-Wesley,
2001.

[6] K.Czarnecki and U . Ei s enecker. Gener ative Program-
ming. Addi s on-Wes ley, 2000.

[7] K. Czarnecki and K. Pi etroszek. Veri fying F eature-
Based Model Templat es A gainst Wel l -F ormed OCL
Constrai nts. In 5th Inter national Conf er ence on Gen-
erati ve Pr ogram mi ng and Component Engi neering
(G PCE 2006), Por t l and, Or egon, USA, O ct 24-27,
2006.

[8] O. D íaz and J .J . Rodríguez. Port l ets as Web Compo-
nents: an Introduct ion. J. U CS, 10(4): 454–472,2004.

[9] O. D iaz, S . Trujillo, and F. I. Anfurrutia. Supporting
P roducti on Strategies as Refin ement s of the Produc-
tion P rocess . In Sof twar e Pr oduct L i nes , 9th Int erna-
tional Conf er ence (SPL C), Rennes, Fr ance, Septem-
ber 26-29, pages 210–221, 2005.

[10] O. Díaz, S. Truji l l o, and S. Perez. Turning P ortlets
into Services: Introducing the Organi zat ion Profile.
In 16th Inter national W or ld Wi de W eb Conf er ence
(W W W), Banf f , Canada, M ay 8-12, N ovember 2007.

[11] J . G reenfeld et al. Software Factories: Assembling
Appli cat i ons with Patter ns, Model s , Fr amework s, and
T ools. Wiley, 2004.

[12] J CP. JSR 168 Portlet Specification, Version 1.0,
September 2003.
http: / /ww w.jcp.org/en/ js r/ detail?i d=168.

E-6 | CMU/SEI-2008-SR-06

[13] J. Lee, K. Kang, and S. Kim. A feature-bas ed ap-
proach to product line production planni ng. In SPLC,
2004.

[14] J.D. McGregor. P roduct Production. Journal Object
Technol ogy, 3(10):89–98, N ovember/ December 2004.

[15] OAS IS . Web S ervi ce for Remot e P ortals
(WS RP) Vers ion 1.0, 2003. ht t p://www.oasis-
open.org/commitees/ws rp/.

[16] T. Erl . Servi ce-O riented Ar chi t ecture : A Field Guide
to Integr ating XM L and Web Ser vices . Prentice Hall ,
2004.

[17] S. Trujillo, M. Azanza, and O. Di az. Generat ive
Met aprogramming. In 6t h Inter national Conf erence
on Generative Progr amming and Component Engi-
neer ing (GPCE), Salzbur g, Aus t r ia, 2007.

[18] S. Trujill o, D. Batory, and O. Díaz. F eature Ori-
ented Model Driven Development: A Case St udy for
Port l ets. In 29t h Int ernat i onal Conf erence on Sof twar e
Engineering (ICSE), Minneapol i s , Minnes ot a, USA,
May 20-26, 2007.

[19] R. van Ommeri ng. Building Product Populations wit h
Soft w are Components. In 24th Int ernat i onal Con-
f er ence on Sof t war e Engineer ing (ICSE), Or lando,
Flor ida (USA), 2002.

[20] R. C. van Ommeri ng, F. van der Li nden, J. Kramer,
and J . Magee. The Koala Component Model for
Cons umer Electroni cs Soft ware. IEEE Computer ,
33(3):78–85, 2000.

[21] Y. Wang, A. Kobs a, A. van der Hoek, and
J. White. PLA -bas ed Runtime Dynamis m in Support
of Privacy-Enhanced Web Pers onalization. In SPLC,
2006.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

May 2008
3. REPORT TYPE AND DATES

COVERED
Final

4. title and subtitle

Proceedings of the First Workshop on Service-Oriented Architectures and Software Product
Lines

5. FUNDING NUMBERS
FA8721-05-C-0003

6. author(s)

Sholom Cohen, Robert Krut
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2008-SR-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report contains the proceedings of the First Workshop on Service-Oriented Architectures and Product Lines (SOAPL) 2007 that
was held on September 10th, 2007 in Kyoto, Japan as part of the 2007 Software Product Line Conference (SPLC 2007). This report in-
cludes an overview of the workshop, four invited presentations, details of the workshop’s outcomes, and the workshop position papers.

14. SUBJECT TERMS
workshop, service-oriented architectures, product lines (SOAPL) 2007, SOA, service features,
service variability

15. NUMBER OF PAGES
74

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Proceedings of the First Workshop on Service-Oriented Architectures and Software Product Lines
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Workshop Organization and Format
	3 Workshop Papers and Presentations
	4 Additional Discussion Topics
	5 Workshop Outcomes
	References
	Appendix A: Software Product Lines and Service-Oriented Architecture
	Appendix B: A Taxonomy of Variability in Web Service Flows

	Appendix C: Comparison of Service and Software Product Family Modeling
	Appendix D: Identifying and Specifying Reusable Services of Service Centric Systems Through Product LineTechnology
	Appendix E: Product Lines that Supply Other Product Lines: A Service-Oriented Approach

